1 |
Azoulay E, Soares M, Benoit D. Focus on immunocompromised patients [J]. Intensive Care Med, 2016, 42(3): 463-465.
|
2 |
Bermejo-Martin JF, Andaluz-Ojeda D, Almansa R, et al. Defining immunological dysfunction in sepsis: A requisite tool for precision medicine [J]. J Infect, 2016, 72(5): 525-536.
|
3 |
Hall MW, Knatz NL, Vetterly C, et al. Immunoparalysis and nosocomial infection in children with multiple organ dysfunction syndrome [J]. Intensive Care Med, 2011, 37(3): 525-532.
|
4 |
Boomer JS, To K, Chang KC, Takasu O, et al. Immunosuppression in patients who die of sepsis and multiple organ failure [J]. JAMA, 2011, 306(23): 2594-2605.
|
5 |
Drewry AM, Hotchkiss RS. Sepsis: Revising definitions of sepsis [J]. Nat Rev Nephrol, 2015, 11(6): 326-328.
|
6 |
Iwasaki A, Medzhitov R. A new shield for a cytokine storm [J]. Cell, 2011, 146(6): 861-862.
|
7 |
Otto GP, Sossdorf M, Claus RA, et al. The late phase of sepsis is characterized by an increased microbiological burden and death rate [J]. Crit Care, 2011, 15(4): R183.
|
8 |
Cajander S, Bäckman A, Tina E, et al. Preliminary results in quantitation of HLA-DRA by real-time PCR: a promising approach toidentify immunosuppression in sepsis [J]. Crit Care, 2013, 17(5): R223.
|
9 |
Wu JF, Ma J, Chen J, et al. Changes of monocyte human leukocyte antigen-DR expression as a reliable predictor ofmortality in severe sepsis [J]. Crit Care, 2011, 15(5): R220.
|
10 |
Meisel C, Schefold JC, Pschowski R, et al. Granulocyte-macrophage colony-stimulating factor to reverse sepsis-associated immunosuppression: a double-blind, randomized, placebo-controlled multicenter trial [J]. Am J Respir Crit Care Med, 2009, 180(7): 640-648.
|
11 |
Xiao W, Mindrinos MN, Seok J, et al. A genomic storm in critically injured humans [J]. J Exp Med, 2011, 208(13): 2581-2590.
|
12 |
Russell JA. Genomics and pharmacogenomics of sepsis: so close and yet so far [J]. Crit Care, 2016, 20(1): 185.
|
13 |
Calvano SE, Xiao W, Richards DR, et al. A network-based analysis of systemic inflammation in humans [J]. Nature, 2005, 437(7061): 1032-1037.
|
14 |
Gotts JE, Matthay MA. Sepsis: pathophysiology and clinical management [J]. BMJ, 2016, 353: i1585.
|
15 |
Yang HM, Yu Y, Chai JK, et al. Low HLA-DR expression on CD14+ monocytes of burn victims with sepsis, and the effect of carbachol in vitro [J]. Burns, 2008, 34(8): 1158-1162.
|
16 |
Delano MJ, Ward PA. The immune system′s role in sepsis progression, resolution, and long-term outcome [J]. Immunol Rev, 2016, 274(1): 330-353.
|
17 |
Kirchhoff C, Biberthaler P, Mutschler WE, et al. Early down-regulation of the pro-inflammatory potential of monocytes is correlated to organ dysfunction in patients after severe multiple injury: a cohort study [J]. Crit Care, 2009,13(3): R88.
|
18 |
Takahashi K, Satoi S, Yanagimoto H, et al. Circulating dendritic cells and development of septic complications after pancreatectomy for pancreatic cancer [J]. Arch Surg, 2007, 142(12): 1151-1157.
|
19 |
D′Arpa N, Accardo-Palumbo A, Amato G, et al. Circulating dendritic cells following burn [J]. Burns, 2009, 35(4): 513-518.
|
20 |
Dopheide JF, Obst V, Doppler C, et al. Phenotypic characterisation of pro-inflammatory monocytes and dendritic cells in peripheral arterial disease [J]. Thromb Haemost, 2012,108(6): 1198-1207.
|
21 |
Riccardi F, Della Porta MG, Rovati B, et al. Flow cytometric analysis of peripheral blood dendritic cells in patients with severe sepsis [J]. Cytometry B Clin Cytom, 2011, 80(1): 14-21.
|
22 |
Giamarellos-Bourboulis EJ, Tsaganos T, Spyridaki E, et al. Early changes of CD4-positive lymphocytes and NK cells in patients with severe Gram-negative sepsis [J]. Crit Care, 2006, 10(6): R166.
|
23 |
Andaluz-Ojeda D, Iglesias V, Bobillo F, et al. Early natural killer cell counts in blood predict mortality in severe sepsis [J]. Crit Care, 2011,15(5): R243.
|
24 |
Gloor B, Stahel PF, Müller CA, et al. Predictive value of complement activation fragments C3a and sC5b-9 for development of severe disease in patients with acute pancreatitis [J]. Scand J Gastroenterol, 2003, 38(10): 1078-1082.
|
25 |
Ren J, Zhao Y, Yuan Y, et al. Complement depletion deteriorates clinical outcomes of severe abdominal sepsis: a conspiratorof infection and coagulopathy in crime? [J]. PLoS One, 2012, 7(10): e47095.
|
26 |
Manson J, Cole E, De′Ath HD, et al. Early changes within the lymphocyte population are associated with the development ofmultiple organ dysfunction syndrome in trauma patients [J]. Crit Care, 2016, 20(1): 176.
|
27 |
Drewry AM, Samra N, Skrupky LP, et al. Persistent lymphopenia after diagnosis of sepsis predicts mortality [J]. Shock, 2014, 42(5): 383-391.
|
28 |
Patenaude J, D’Elia M, Hamelin C, et al. Burn injury induces a change in T cell homeostasis affecting preferentially CD4+ T cells [J]. J Leukoc Biol, 2005, 77(2): 141-150.
|
29 |
Inatsu A, Kogiso M, Jeschke MG, et al. Lack of Th17 cell generation in patients with severe burn injuries [J]. J Immunol, 2011, 187(5): 2155-2161.
|
30 |
Sakaguchi S, Vignali DA, Rudensky AY, et al. The plasticity and stability of regulatory T cells [J]. Nat Rev Immunol, 2013,13(6):461-467.
|
31 |
Brunialti MK, Santos MC, Rigato O, et al. Increased percentages of T helper cells producing IL-17 and monocytes expressing markers of alternative activation in patients with sepsis [J]. PLoS One, 2012, 7(5): e37393.
|
32 |
Masopust D, Schenkel JM. The integration of T cell migration, differentiation and function [J]. Nat Rev Immunol, 2013, 13(5): 309-320.
|
33 |
O′Sullivan ST, Lederer JA, Horgan AF, et al. Major injury leads to predominance of the T helper-2 lymphocyte phenotype and diminished interleukin-12 production associated with decreased resistance to infection [J]. Ann Surg, 1995, 222(4): 482-490.
|
34 |
Spolarics Z, Siddiqi M, Siegel JH, et al. Depressed interleukin-12-producing activity by monocytes correlates with adverse clinical course and a shift toward Th2-type lymphocyte pattern in severely injured male trauma patients [J]. Crit Care Med, 2003, 31(6): 1722-1729.
|
35 |
Yu ZX, Ji MS, Yan J, et al. The ratio of Th17/Treg cells as a risk indicator in early acute respiratory distress syndrome [J]. Crit Care, 2015, 19: 82.
|
36 |
del Rosario Espinoza Mora M, Böhm M, Link A. The Th17/Treg imbalance in patients with cardiogenic shock [J]. Clin Res Cardiol, 2014, 103(4): 301-313.
|
37 |
Wang L, Song H, Gong Z, et al. Acute pulmonary embolism and dysfunction of CD3+ CD8+ T cell immunity [J]. Am J Respir Crit Care Med, 2011, 184(11): 1315.
|
38 |
Haoming S, Lemin W, Zhu G, et al. T cell-mediated immune deficiency or compromise in patients with CTEPH [J]. Am J Respir Crit Care Med, 2011, 183(3): 417-418.
|
39 |
Cui N, Wang H, Long Y, et al. CD8+ T-cell counts: an early predictor of risk and mortality in critically ill immunocompromised patients with invasive pulmonary aspergillosis [J]. Crit Care, 2013, 17(4): R157.
|
40 |
Gomez HG, Gonzalez SM, Londoño JM, et al. Immunological characterization of compensatory anti-inflammatory response syndrome in patients with severe sepsis: a longitudinal study [J]. Crit Care Med, 2014, 42(4): 771-780.
|
41 |
刘军, 吴允孚. 危重病相关免疫功能障碍 [J]. 中华急诊医学杂志, 2015, 24(8): 918-921.
|
42 |
Monserrat J, de Pablo R, Diaz-Martín D, et al. Early alterations of B cells in patients with septic shock [J]. Crit Care, 2013, 17(3): R105.
|
43 |
Andaluz-Ojeda D, Iglesias V, Bobillo F, et al. Early levels in blood of immunoglobulin M and natural killer cells predict outcome in nonseptic critically ill patients [J]. J Crit Care, 2013, 28(6): 1110.e7-1110.e10.
|
44 |
DiPiro JT, Howdieshell TR, Hamilton RG, et al. Immunoglobulin E and eosinophil counts are increased after sepsis in trauma patients [J]. Crit Care Med, 1998, 26(3): 465-469.
|
45 |
McLean AS, Tang B, Huang SJ. Investigating sepsis with biomarkers [J]. BMJ, 2015, 350: h254.
|
46 |
Sweeney TE, Shidham A, Wong HR, et al. A comprehensive time-course-based multicohort analysis of sepsis and sterile inflammationreveals a robust diagnostic gene set [J]. Sci Transl Med, 2015, 7(287): 287ra271.
|
47 |
张庆红, 姚咏明. 进一步重视创(烧)伤脓毒症的免疫监控 [J]. 中华急诊医学杂志, 2014, 23(2): 125-128.
|