切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2019, Vol. 05 ›› Issue (01) : 56 -63. doi: 10.3877/cma.j.issn.2096-1537.2019.01.011

所属专题: 文献

综述

危重病免疫功能监测研究进展
刘军1,()   
  1. 1. 215001 南京医科大学附属苏州医院 苏州市立医院东区ICU
  • 收稿日期:2016-12-25 出版日期:2019-02-28
  • 通信作者: 刘军
  • 基金资助:
    江苏省自然科学基金资助项目(BK20141175); 江苏省卫生厅科技项目(Z201414); 苏州市科技计划项目(SYS201569); 苏州市临床重点病种诊疗技术专项(LCZX201607); 江苏省第五期"333工程"科研项目(BRA2016070)

Immunological monitoring in critically ill associated immune dysfunction

Jun Liu1,()   

  1. 1. Department of Critical Care Medicine, Suzhou Hospital, Nanjing Medical University, Suzhou 215001, China
  • Received:2016-12-25 Published:2019-02-28
  • Corresponding author: Jun Liu
  • About author:
    Corresponding author: Liu Jun, Email:
引用本文:

刘军. 危重病免疫功能监测研究进展[J]. 中华重症医学电子杂志, 2019, 05(01): 56-63.

Jun Liu. Immunological monitoring in critically ill associated immune dysfunction[J]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2019, 05(01): 56-63.

近年来,重症患者免疫功能障碍日益受到重视。重症患者免疫功能监测包括固有免疫和获得性免疫功能监测。免疫功能监测可反映机体免疫功能变化的性质和程度,可用于评估免疫功能状态,判断病情严重程度,实现个体化免疫调节治疗,评估免疫调节治疗效果和预测患者预后。因此,精准化免疫功能监测对于危重患者具有重要临床意义。本文就危重病患者免疫功能监测的研究进展进行综述。

In recent years, critically ill associated immune dysfunction has been drawn a considerable attention in intensive care unit. Monitoring immunological function in critical illness includes innate and acquired immune function may help to determine the nature and degree of immune change, evaluate immune function status, assess the severity of disease, personalize the immunomodulatory therapy, evaluate the effect of immunotherapy, and predict the prognosis of critically ill patients. Therefore, precision of immune function monitoring has important clinical meaning in the critically ill patients. This review focuses on the recent findings in monitoring critically ill associated immune dysfunction.

1
Azoulay E, Soares M, Benoit D. Focus on immunocompromised patients [J]. Intensive Care Med, 2016, 42(3): 463-465.
2
Bermejo-Martin JF, Andaluz-Ojeda D, Almansa R, et al. Defining immunological dysfunction in sepsis: A requisite tool for precision medicine [J]. J Infect, 2016, 72(5): 525-536.
3
Hall MW, Knatz NL, Vetterly C, et al. Immunoparalysis and nosocomial infection in children with multiple organ dysfunction syndrome [J]. Intensive Care Med, 2011, 37(3): 525-532.
4
Boomer JS, To K, Chang KC, Takasu O, et al. Immunosuppression in patients who die of sepsis and multiple organ failure [J]. JAMA, 2011, 306(23): 2594-2605.
5
Drewry AM, Hotchkiss RS. Sepsis: Revising definitions of sepsis [J]. Nat Rev Nephrol, 2015, 11(6): 326-328.
6
Iwasaki A, Medzhitov R. A new shield for a cytokine storm [J]. Cell, 2011, 146(6): 861-862.
7
Otto GP, Sossdorf M, Claus RA, et al. The late phase of sepsis is characterized by an increased microbiological burden and death rate [J]. Crit Care, 2011, 15(4): R183.
8
Cajander S, Bäckman A, Tina E, et al. Preliminary results in quantitation of HLA-DRA by real-time PCR: a promising approach toidentify immunosuppression in sepsis [J]. Crit Care, 2013, 17(5): R223.
9
Wu JF, Ma J, Chen J, et al. Changes of monocyte human leukocyte antigen-DR expression as a reliable predictor ofmortality in severe sepsis [J]. Crit Care, 2011, 15(5): R220.
10
Meisel C, Schefold JC, Pschowski R, et al. Granulocyte-macrophage colony-stimulating factor to reverse sepsis-associated immunosuppression: a double-blind, randomized, placebo-controlled multicenter trial [J]. Am J Respir Crit Care Med, 2009, 180(7): 640-648.
11
Xiao W, Mindrinos MN, Seok J, et al. A genomic storm in critically injured humans [J]. J Exp Med, 2011, 208(13): 2581-2590.
12
Russell JA. Genomics and pharmacogenomics of sepsis: so close and yet so far [J]. Crit Care, 2016, 20(1): 185.
13
Calvano SE, Xiao W, Richards DR, et al. A network-based analysis of systemic inflammation in humans [J]. Nature, 2005, 437(7061): 1032-1037.
14
Gotts JE, Matthay MA. Sepsis: pathophysiology and clinical management [J]. BMJ, 2016, 353: i1585.
15
Yang HM, Yu Y, Chai JK, et al. Low HLA-DR expression on CD14+ monocytes of burn victims with sepsis, and the effect of carbachol in vitro [J]. Burns, 2008, 34(8): 1158-1162.
16
Delano MJ, Ward PA. The immune system′s role in sepsis progression, resolution, and long-term outcome [J]. Immunol Rev, 2016, 274(1): 330-353.
17
Kirchhoff C, Biberthaler P, Mutschler WE, et al. Early down-regulation of the pro-inflammatory potential of monocytes is correlated to organ dysfunction in patients after severe multiple injury: a cohort study [J]. Crit Care, 2009,13(3): R88.
18
Takahashi K, Satoi S, Yanagimoto H, et al. Circulating dendritic cells and development of septic complications after pancreatectomy for pancreatic cancer [J]. Arch Surg, 2007, 142(12): 1151-1157.
19
D′Arpa N, Accardo-Palumbo A, Amato G, et al. Circulating dendritic cells following burn [J]. Burns, 2009, 35(4): 513-518.
20
Dopheide JF, Obst V, Doppler C, et al. Phenotypic characterisation of pro-inflammatory monocytes and dendritic cells in peripheral arterial disease [J]. Thromb Haemost, 2012,108(6): 1198-1207.
21
Riccardi F, Della Porta MG, Rovati B, et al. Flow cytometric analysis of peripheral blood dendritic cells in patients with severe sepsis [J]. Cytometry B Clin Cytom, 2011, 80(1): 14-21.
22
Giamarellos-Bourboulis EJ, Tsaganos T, Spyridaki E, et al. Early changes of CD4-positive lymphocytes and NK cells in patients with severe Gram-negative sepsis [J]. Crit Care, 2006, 10(6): R166.
23
Andaluz-Ojeda D, Iglesias V, Bobillo F, et al. Early natural killer cell counts in blood predict mortality in severe sepsis [J]. Crit Care, 2011,15(5): R243.
24
Gloor B, Stahel PF, Müller CA, et al. Predictive value of complement activation fragments C3a and sC5b-9 for development of severe disease in patients with acute pancreatitis [J]. Scand J Gastroenterol, 2003, 38(10): 1078-1082.
25
Ren J, Zhao Y, Yuan Y, et al. Complement depletion deteriorates clinical outcomes of severe abdominal sepsis: a conspiratorof infection and coagulopathy in crime? [J]. PLoS One, 2012, 7(10): e47095.
26
Manson J, Cole E, De′Ath HD, et al. Early changes within the lymphocyte population are associated with the development ofmultiple organ dysfunction syndrome in trauma patients [J]. Crit Care, 2016, 20(1): 176.
27
Drewry AM, Samra N, Skrupky LP, et al. Persistent lymphopenia after diagnosis of sepsis predicts mortality [J]. Shock, 2014, 42(5): 383-391.
28
Patenaude J, D’Elia M, Hamelin C, et al. Burn injury induces a change in T cell homeostasis affecting preferentially CD4+ T cells [J]. J Leukoc Biol, 2005, 77(2): 141-150.
29
Inatsu A, Kogiso M, Jeschke MG, et al. Lack of Th17 cell generation in patients with severe burn injuries [J]. J Immunol, 2011, 187(5): 2155-2161.
30
Sakaguchi S, Vignali DA, Rudensky AY, et al. The plasticity and stability of regulatory T cells [J]. Nat Rev Immunol, 2013,13(6):461-467.
31
Brunialti MK, Santos MC, Rigato O, et al. Increased percentages of T helper cells producing IL-17 and monocytes expressing markers of alternative activation in patients with sepsis [J]. PLoS One, 2012, 7(5): e37393.
32
Masopust D, Schenkel JM. The integration of T cell migration, differentiation and function [J]. Nat Rev Immunol, 2013, 13(5): 309-320.
33
O′Sullivan ST, Lederer JA, Horgan AF, et al. Major injury leads to predominance of the T helper-2 lymphocyte phenotype and diminished interleukin-12 production associated with decreased resistance to infection [J]. Ann Surg, 1995, 222(4): 482-490.
34
Spolarics Z, Siddiqi M, Siegel JH, et al. Depressed interleukin-12-producing activity by monocytes correlates with adverse clinical course and a shift toward Th2-type lymphocyte pattern in severely injured male trauma patients [J]. Crit Care Med, 2003, 31(6): 1722-1729.
35
Yu ZX, Ji MS, Yan J, et al. The ratio of Th17/Treg cells as a risk indicator in early acute respiratory distress syndrome [J]. Crit Care, 2015, 19: 82.
36
del Rosario Espinoza Mora M, Böhm M, Link A. The Th17/Treg imbalance in patients with cardiogenic shock [J]. Clin Res Cardiol, 2014, 103(4): 301-313.
37
Wang L, Song H, Gong Z, et al. Acute pulmonary embolism and dysfunction of CD3 CD8 T cell immunity [J]. Am J Respir Crit Care Med, 2011, 184(11): 1315.
38
Haoming S, Lemin W, Zhu G, et al. T cell-mediated immune deficiency or compromise in patients with CTEPH [J]. Am J Respir Crit Care Med, 2011, 183(3): 417-418.
39
Cui N, Wang H, Long Y, et al. CD8 T-cell counts: an early predictor of risk and mortality in critically ill immunocompromised patients with invasive pulmonary aspergillosis [J]. Crit Care, 2013, 17(4): R157.
40
Gomez HG, Gonzalez SM, Londoño JM, et al. Immunological characterization of compensatory anti-inflammatory response syndrome in patients with severe sepsis: a longitudinal study [J]. Crit Care Med, 2014, 42(4): 771-780.
41
刘军, 吴允孚. 危重病相关免疫功能障碍 [J]. 中华急诊医学杂志, 2015, 24(8): 918-921.
42
Monserrat J, de Pablo R, Diaz-Martín D, et al. Early alterations of B cells in patients with septic shock [J]. Crit Care, 2013, 17(3): R105.
43
Andaluz-Ojeda D, Iglesias V, Bobillo F, et al. Early levels in blood of immunoglobulin M and natural killer cells predict outcome in nonseptic critically ill patients [J]. J Crit Care, 2013, 28(6): 1110.e7-1110.e10.
44
DiPiro JT, Howdieshell TR, Hamilton RG, et al. Immunoglobulin E and eosinophil counts are increased after sepsis in trauma patients [J]. Crit Care Med, 1998, 26(3): 465-469.
45
McLean AS, Tang B, Huang SJ. Investigating sepsis with biomarkers [J]. BMJ, 2015, 350: h254.
46
Sweeney TE, Shidham A, Wong HR, et al. A comprehensive time-course-based multicohort analysis of sepsis and sterile inflammationreveals a robust diagnostic gene set [J]. Sci Transl Med, 2015, 7(287): 287ra271.
47
张庆红, 姚咏明. 进一步重视创(烧)伤脓毒症的免疫监控 [J]. 中华急诊医学杂志, 2014, 23(2): 125-128.
[1] 李春静, 张明帅, 彭卫, 付晓莹, 刘雪珍, 曹春燕, 任雅坤, 李洪娟, 赖丽思, 郑维. 巨大乳腺癌伴人免疫缺陷病毒感染一例[J]. 中华乳腺病杂志(电子版), 2022, 16(05): 319-321.
[2] 吴令杰, 陈瑞烈, 陈桂佳, 肖湘明, 林钟滨. 两例获得性免疫缺陷综合征合并新型冠状病毒感染者抗病毒治疗并文献复习[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(04): 282-286.
[3] 李玉静, 陈七一, 谢汝明, 陈步东. 获得性免疫缺陷综合征相关原发性中枢神经系统淋巴瘤的预后研究[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(03): 200-208.
[4] 朱晓红, 周诗梦, 朱晓霞, 邹美银. 壳聚糖修饰的聚乳酸-羟基乙酸共聚物纳米颗粒在控制释放抗人类免疫缺陷病毒药物传递中的应用[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(02): 125-132.
[5] 袁瑞, 胡文佳, 桂希恩, 严亚军, 冯玲, 柯亨宁, 熊勇, 杨蓉蓉. 淋巴细胞精细分型检测在人类免疫缺陷病毒感染者/获得性免疫缺陷综合征患者中的应用[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(02): 84-91.
[6] 王彤彤, 朱春雨, 刘颖楚, 郜桂菊. 复方磺胺甲噁唑治疗获得性免疫缺陷综合征合并肺孢子菌肺炎现状及其肝功能损伤机制[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(02): 79-83.
[7] 王延雪, 胡虹英, 李新刚, 鹿星梦. 获得性免疫缺陷综合征患者免疫重建炎症综合征相关Graves’病5例并文献复习[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(01): 65-70.
[8] 李倩, 邓莉平, 陈果, 张忠威, 莫平征, 胡文佳, 陈良君, 张捷, 张永喜, 杨蓉蓉, 熊勇. 宏基因组二代测序在获得性免疫缺陷综合征合并中枢神经系统感染中的临床应用[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(01): 24-31.
[9] 董愉, 柳月红, 许雪静, 刘彬彬. 免散瞳超广角激光扫描检眼镜在获得性免疫缺陷综合征患者眼底病筛查中的优势[J]. 中华实验和临床感染病杂志(电子版), 2022, 16(05): 344-347.
[10] 魏春波, 万钢, 许东梅, 赵兴云, 袁柳凤, 吴焱, 伦文辉. 60例人类免疫缺陷病毒感染者/获得性免疫缺陷综合征合并神经梅毒患者临床和实验室特征[J]. 中华实验和临床感染病杂志(电子版), 2022, 16(04): 254-260.
[11] 季媛, 魏巴金. NLRP3炎性小体在器官移植不良反应发病机制中的研究进展[J]. 中华移植杂志(电子版), 2023, 17(05): 308-312.
[12] 中华医学会器官移植学分会, 国家肾脏移植质控中心. 肾移植受者人类微小病毒B19感染临床诊疗技术规范(2022版)[J]. 中华移植杂志(电子版), 2022, 16(04): 193-200.
[13] 李玉娟, 潘蕾, 鱼高乐, 代川川, 南岩东, 金发光. 获得性免疫缺陷综合征并发卡氏肺孢子菌肺炎一例报告[J]. 中华肺部疾病杂志(电子版), 2022, 15(04): 600-602.
[14] 吴素馨, 叶韵斌. TCR-T治疗中靶点选择的策略[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(04): 250-256.
[15] 符梅沙, 周玉华, 李慧, 薛春颜. 淋巴细胞免疫治疗对复发性流产患者外周血T淋巴细胞亚群分布与PD1/PD-L1表达的影响及意义[J]. 中华临床医师杂志(电子版), 2023, 17(06): 726-730.
阅读次数
全文


摘要