切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2022, Vol. 08 ›› Issue (01) : 55 -61. doi: 10.3877/cma.j.issn.2096-1537.2022.01.008

综述

功能残气量在重症患者中的应用进展
刘学松1, 刘晓青1, 黎毅敏1,()   
  1. 1. 510120 呼吸疾病国家重点实验室 广州呼吸健康研究院 广州医科大学附属第一医院重症医学科
  • 收稿日期:2021-09-14 出版日期:2022-02-28
  • 通信作者: 黎毅敏
  • 基金资助:
    广东省科技计划项目(2020B1111340001); 广州医科大学附属第一医院培育项目

Application of functional residual capacity in critically ill patients

Xuesong Liu1, Xiaoqing Liu1, Yimin Li1,()   

  1. 1. Department of Critical Care Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Disease, State Key Laboratory of Respiratory Diseases, Guangzhou 510120, China
  • Received:2021-09-14 Published:2022-02-28
  • Corresponding author: Yimin Li
引用本文:

刘学松, 刘晓青, 黎毅敏. 功能残气量在重症患者中的应用进展[J]. 中华重症医学电子杂志, 2022, 08(01): 55-61.

Xuesong Liu, Xiaoqing Liu, Yimin Li. Application of functional residual capacity in critically ill patients[J]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2022, 08(01): 55-61.

功能残气量(FRC)是平静呼气末肺内残留的气体量,具有重要的生理功能。在需要机械通气的重症患者中呼气结束时的肺容积被称为呼气末肺容积。目前临床上有多种检测和监测FRC的方法,包括CT测量法、氦气稀释法、氮气冲洗法、电阻抗断层成像技术等方法,其中氮气冲洗法中的氮气洗入/洗出技术更适合在重症患者中开展。FRC可以作为评估机械通气患者肺部疾病病情并指导个性化的保护性机械通气策略的方法,来降低呼吸机相关性肺损伤(VILI)。FRC在机械通气患者中的临床应用越来越受到重视,在病情评估、ARDS患者中的肺保护通气设置和麻醉时肺部情况监测等方面具有重要临床意义。本文对FRC的病理生理功能、检测方法及在重症患者中的应用进行综述。

Functional residual capacity (FRC) is the amount of residual air in the lungs at the end of expiration calm, which has important physiological functions. In critically ill patients requiring mechanical ventilation, the lung volume at the end of expiration is called the end-expiratory lung volume. There are many clinical methods for detecting and monitoring FRC, including CT measurement, helium dilution, nitrogen flushing, electrical impedance tomography and other methods. Among them, the nitrogen flushing in/out technology in the nitrogen flushing method is easy to being. carried out in critically ill patients. FRC can be used to assess the condition of lung diseases in mechanically ventilated patients and guide the designation of personalized protective mechanical ventilation strategies to reduce ventilator-induced lung injury. More and more attention is paid to the clinical application of FRC in mechanically ventilated patients, which is of great significance in terms of disease assessment, lung protection ventilation settings for ARDS patients, and lung condition monitoring during anesthesia. This article reviews the pathophysiological functions, detection methods and application of FRC in critically ill patients.

1
朱蕾. 肺容积参数的解读 [J]. 中华结核和呼吸杂志, 2015, 38(5): 395-396.
2
Gommers D. Functional residual capacity and absolute lung volume [J]. Curr Opin Crit Care, 2014, 20(3): 347-351.
3
Bikker IG, van Bommel J, Reis MD, et al. End-expiratory lung volume during mechanical ventilation: a comparison with reference values and the effect of positive end-expiratory pressure in intensive care unit patients with different lung conditions [J]. Crit Care, 2008, 12: R145.
4
Clausen J. Measurement of absolute lung volumes by imaging techniques [J]. Eur Respir J, 1997, 10(10): 2427-2431.
5
Liu Q, Gao YH, Hua DM, et al. Functional residual capacity in beagle dogs with and without acute respiratory distress syndrome [J]. J Thorac Dis, 2015, 7(8): 1459-1466.
6
Patroniti N, Bellani G, Manfio A, et al. Lung volume in mechanically ventilated patients: measurement by simplified helium dilution compared to quantitative CT scan [J]. Intensive Care Med, 2004, 30(2): 282-289.
7
Brewer LM, Orr JA, Sherman MR, et al. Measurement of functional residual capacity by modified multiple breath nitrogen washout for spontaneously breathing and mechanically ventilated patients [J]. Br J Anaesth, 2011, 107(5): 796-805.
8
Di Marco F, Rota SL, Milan B, et al. Measurement of functional residual capacity by helium dilution during partial support ventilation: in vitro accuracy and in vivo precision of the method [J]. Intensive Care Med, 2007, 33(12): 2109-2115.
9
Motta-Ribeiro GC, Jandre FC, Wrigge H, et al. Generalized estimation of the ventilatory distribution from the multiple-breath nitrogen washout [J]. Biomed Eng Online, 2016, 15(1): 89.
10
Hentschel R, Suska A, Volbracht A, et al. Modification of the open circuit N2 washout technique for measurement of functional residual capacity in premature infants [J]. Pediatr Pulmonol, 1997, 23(6): 434-441.
11
Weismann D, Reissmann H, Maisch S, et al. Monitoring of functional residual capacity by an oxygen washin/washout; technical description and evaluation [J]. J Clin Monit Comput, 2006, 20(4): 251-260.
12
Olegård C, Söndergaard S, Houltz E, et al. Estimation of functional residual capacity at the bedside using standard monitoring equipment: a modified nitrogen washout/washin technique requiring a small change of the inspired oxygen fraction [J]. Anesth Analg, 2005, 101(1): 206-212.
13
Chiumello D, Cressoni M, Chierichetti M, et al. Nitrogen washout/washin, helium dilution and computed tomography in the assessment of end expiratory lung volume [J]. Crit Care, 2008, 12(6): R150.
14
Schibler A, Hammer J, Isler R, et al. Measurement of lung volume in mechanically ventilated monkeys with an ultrasonic flow meter and the nitrogen washout method [J]. Intensive Care Med, 2004, 30(1): 127-132.
15
Phan PA, Zhang C, Geer D, et al. The inspired sinewave technique: a comparison study with body plethysmography in healthy volunteers [J]. IEEE J Transl Eng Health Med, 2017, 5: 2700209.
16
Bikker IG, Leonhardt S, Bakker J, et al. Lung volume calculated from electrical impedance tomography in ICU patients at different PEEP levels [J]. Intensive Care Med, 2009, 35(8): 1362-1367.
17
Meier T, Luepschen H, Karsten J, et al. Assessment of regional lung recruitment and derecruitment during a PEEP trial based on electrical impedance tomography [J]. Intensive Care Med, 2008, 34(3): 543-550.
18
Wrigge H, Zinserling J, Muders T, et al. Electrical impedance tomography compared with thoracic computed tomography during a slow inflation maneuver in experimental models of lung injury [J]. Crit Care Med, 2008, 36(3): 903-909.
19
Franchineau G, Brechot N, Lebreton G, et al. Bedside contribution of electrical impedance tomography to setting positive end-expiratory pressure for extracorporeal membrane oxygenation-treated patients with severe acute respiratory distress syndrome [J]. Am J Respir Crit Care Med, 2017, 196(4): 447-457.
20
Stocks J, Quanjer PH. Reference values for residual volume, functional residual capacity and total lung capacity. ATS Workshop on Lung Volume Measurements. Official Statement of The European Respiratory Society [J]. Eur Respir J, 1995, 8(3): 492-506.
21
罗文侗, 王山泽, 颜泽敏, 等. 体描法与氮清洗法测定功能残气量的比较 [J]. 中华结核和呼吸杂志, 1996, 19(1): 52-53.
22
Ibañez J, Raurich JM. Normal values of functional residual capacity in the sitting and supine positions [J]. Intensive Care Med, 1982, 8(4): 173-177.
23
朱蕾, 刘又宁, 钮善福. 临床呼吸生理学 [M]. 北京: 人民卫生出版社, 2008.
24
张京范, 范志毅, 王忱, 等. 不同手术体位对通气功能的影响 [J]. 北京大学学报(医学版), 1991, 23(2): 133-134.
25
Heinze H, Sedemund-Adib B, Heringlake M, et al. The impact of different step changes of inspiratory fraction of oxygen on functional residual capacity measurements using the oxygen washout technique in ventilated patients [J]. Anesth Analg, 2008, 106(5): 1491-1494.
26
王寅. 慢性阻塞性肺疾病患者功能残气量与通气功能参数之间的关系 [D]. 上海: 复旦大学, 2013.
27
王寅, 朱蕾. 深吸气量的意义及其在慢性阻塞性肺疾病评估中的价值 [J]. 中国呼吸与危重监护杂志, 2013, 12(2): 214-216.
28
Wang YM, Sun XM, Zhou YM, et al. Effect of positive end-expiratory pressure on functional residual capacity in two experimental models of acute respiratory distress syndrome [J]. J Int Med Res, 2020, 48(6): 300060520920426.
29
Dellamonica J, Lerolle N, Sargentini C, et al. PEEP-induced changes in lung volume in acute respiratory distress syndrome. Two methods to estimate alveolar recruitment [J]. Intensive Care Med, 2011, 37(10): 1595-1604.
30
Gattinoni L, Pesenti A. The concept of "baby lung" [J]. Intensive Care Med, 2005, 31(6): 776-784.
31
Slutsky AS, Ranieri VM. Ventilator-induced lung injury [J]. N Engl J Med, 2013, 369(22): 2126-2136.
32
Gattinoni L, Marini JJ, Collino F, et al. The future of mechanical ventilation: lessons from the present and the past [J]. Crit Care, 2017, 21(1): 183.
33
Dianti J, Matelski J, Tisminetzky M, et al. Comparing the effects of tidal volume, driving pressure, and mechanical power on mortality in trials of lung-protective mechanical ventilation [J]. Respir Care, 2021, 66(2): 221-227.
34
Brower RG, Matthay MA, Morris A, et al. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome [J]. N Engl J Med, 2000, 342(18): 1301-1308.
35
刘奇, 陈荣昌, 李雯, 等. 犬功能残气量与理想体质量之间的关系研究 [J]. 中华急诊医学杂志, 2015, 24(9): 987-993.
36
Gattinoni L, Carlesso E, Caironi P. Stress and strain within the lung [J]. Curr Opin Crit Care, 2012, 18(1): 42-47.
37
Kalenka A, Gruner F, Weiß C, et al. End-expiratory lung volume in patients with acute respiratory distress syndrome: a time course analysis [J]. Lung, 2016, 194(4): 527-534.
38
Casserly B, McCool FD, Saunders J, et al. End-expiratory volume and oxygenation: targeting peep in ards patients [J]. Lung, 2016, 194(1): 35-41.
39
Maisch S, Reissmann H, Fuellekrug B, et al. Compliance and dead space fraction indicate an optimal level of positive end-expiratory pressure after recruitment in anesthetized patients [J]. Anesth Analg, 2008, 106(1): 175-181.
40
Das A, Camporota L, Hardman JG, et al. What links ventilator driving pressure with survival in the acute respiratory distress syndrome? A computational study [J]. Respir Res, 2019, 20(1): 29.
41
Rylander C, Hogman M, Perchiazzi G, et al. Functional residual capacity and respiratory mechanics as indicators of aeration and collapse in experimental lung injury [J]. Anesth Analg, 2004, 98(3): 782-789.
42
Sahetya SK, Brower RG. Lung recruitment and titrated PEEP in moderate to severe ARDS: is the door closing on the open lung? [J]. JAMA, 2017, 318(14): 1327-1329.
43
Blankman P, Hasan D, Bikker IG, et al. Lung stress and strain calculations in mechanically ventilated patients in the intensive care unit [J]. Acta Anaesthesiol Scand, 2016, 60(1): 69-78.
44
Protti A, Cressoni M, Santini A, et al. Lung stress and strain during mechanical ventilation: any safe threshold? [J]. Am J Respir Crit Care Med, 2011, 183(10): 1354-1362.
45
Protti A, Andreis DT, Monti M, et al. Lung stress and strain during mechanical ventilation: any difference between statics and dynamics? [J]. Crit Care Med, 2013, 41(4): 1046-1055.
46
Rocco P, Silva PL, Samary CS, et al. Elastic power but not driving power is the key promoter of ventilator-induced lung injury in experimental acute respiratory distress syndrome [J]. Crit Care, 2020, 24(1): 284.
47
Herrmann J, Tawhai MH, Kaczka DW. Strain, strain rate, and mechanical power: An optimization comparison for oscillatory ventilation [J]. Int J Numer Method Biomed Eng, 2019, 35(10): e3238.
48
邸兴伟, 李晓东 ,胡占升. ARDS患者功能残气量与跨肺压的相关性以及二者对预后的预测价值研究 [J]. 中华危重病急救医学, 2020, 32(2): 166-170.
49
Marini JJ. Evolving concepts for safer ventilation [J]. Crit Care, 2019, 23(Suppl 1): 114.
50
Kallet RH. Should PEEP titration be based on chest mechanics in patients with ARDS? [J]. Respir Care, 2016, 61(6): 876-890.
51
Fan E, Brodie D, Slutsky AS. Acute respiratory distress syndrome: advances in diagnosis and treatment [J]. JAMA, 2018, 319(7): 698-710.
52
Aguirre-Bermeo H, Turella M, Bitondo M, et al. Lung volumes and lung volume recruitment in ARDS: a comparison between supine and prone position [J]. Ann Intensive Care, 2018, 8(1): 25.
53
Chen HC, Ruan SY, Huang CT, et al. Pre-extubation functional residual capacity and risk of extubation failure among patients with hypoxemic respiratory failure [J]. Sci Rep, 2020, 10(1): 937.
54
von Ungern-Sternberg BS, Regli A, Schibler A, et al. The impact of positive end-expiratory pressure on functional residual capacity and ventilation homogeneity impairment in anesthetized children exposed to high levels of inspired oxygen [J]. Anesth Analg, 2007, 104(6): 1364-1368.
55
Heinze H, Sedemund-Adib B, Heringlake M, et al. Functional residual capacity changes after different endotracheal suctioning methods [J]. Anesth Analg, 2008, 107(3): 941-944.
[1] 豆艺璇, 黄怀, 钱绮雯, 邢然然, 林丽, 白建芳. 低强度吸气肌训练对机械通气患者肺康复的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 370-375.
[2] 徐娟, 孙汝贤, 赵东亚, 张清艳, 金兆辰, 蔡燕. 右美托咪定序贯镇静模式对中深度镇静的机械通气患者预后和谵妄的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 363-369.
[3] 许振琦, 易伟, 范闻轩, 王金锋. 经鼻高流量氧疗与无创机械通气在严重创伤术后轻中度低氧血症患者中的临床应用[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 306-309.
[4] 佳麒, 罗楷, 杨磊, 李羽. 气管插管患儿围术期套囊压力管理研究现状杨[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(02): 132-138.
[5] 代芬, 卞士柱. 无创机械通气联合肺康复在肺动脉高压呼吸衰竭治疗中的临床应用[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 560-562.
[6] 钱晓英, 吴新, 徐婷婷. 颅脑损伤并发呼吸衰竭患者早期机械通气的效果分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 526-528.
[7] 程传丽, 曾慧, 周静, 孙凌霞, 吴敏, 钱明江, 陈武, 万洁, 周仁佳. 超声引导下胸肺物理治疗对机械通气患者膈肌功能的疗效分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 563-565.
[8] 赵璐, 尹文静, 贾萌. 不同肺复张策略在老年胸腔镜术中的临床应用[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 382-384.
[9] 徐欣轶, 薛蓓, 蒋莉, 陈慧. NRI联合CFS评分对肺癌术后机械通气的预测分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 358-360.
[10] 林金锋, 张素燕, 田李均, 曹志龙, 徐俊贤, 韩旭东. 短暂呼气末阻塞法用于指导机械通气患者撤机的临床分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 266-268.
[11] 周旻忞, 张恒喜, 冯华, 施林燕. 超声膈肌功能评估对重症肺炎伴呼吸衰竭患者机械通气撤机的指导意义[J]. 中华肺部疾病杂志(电子版), 2023, 16(01): 98-100.
[12] 李宏亮, 周建新. 反转触发:易被忽视的人机不同步[J]. 中华重症医学电子杂志, 2023, 09(01): 19-24.
[13] 朱秀芬, 韦碧琳, 郑慧芳, 丁林芳, 徐子萌, 余文轩, 原皓, 常泽楠, 黄志坤, 刘紫锰. T管与PSV自主呼吸试验对重症患者成功撤机后临床转归的影响——一项回顾性队列研究[J]. 中华重症医学电子杂志, 2023, 09(01): 54-61.
[14] 张俊谊, 徐晓婷, 刘玲. 肌肉组织特异性miRNA与机械通气患者膈肌功能及撤机结局的关系[J]. 中华重症医学电子杂志, 2023, 09(01): 46-53.
[15] 杨怡, 胡馗, 胡汝均, 江智霞. 高氧血症与机械通气治疗导致呼吸机相关性肺炎的相关性研究进展[J]. 中华临床医师杂志(电子版), 2022, 16(06): 597-600.
阅读次数
全文


摘要