切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2022, Vol. 08 ›› Issue (01) : 62 -66. doi: 10.3877/cma.j.issn.2096-1537.2022.01.009

综述

重症患者呼吸钟摆现象的研究进展
池熠1, 何怀武2, 隆云2,()   
  1. 1. 100730 中国医学科学院 北京协和医院重症医学科;100730 中国医学科学院 北京协和医学院
    2. 100730 中国医学科学院 北京协和医院重症医学科
  • 收稿日期:2021-08-31 出版日期:2022-02-28
  • 通信作者: 隆云
  • 基金资助:
    首都卫生发展科研专项(2020-2-40111); 首都临床诊疗技术研究及转化应用项目(Z201100005520051); 2020年北京临床重点专科卓越项目(2020-0-10012)

Respiratory pendelluft in critically ill patients

Yi Chi1, Huaiwu He2, Yun Long2,()   

  1. 1. Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China;Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
    2. Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
  • Received:2021-08-31 Published:2022-02-28
  • Corresponding author: Yun Long
引用本文:

池熠, 何怀武, 隆云. 重症患者呼吸钟摆现象的研究进展[J]. 中华重症医学电子杂志, 2022, 08(01): 62-66.

Yi Chi, Huaiwu He, Yun Long. Respiratory pendelluft in critically ill patients[J]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2022, 08(01): 62-66.

呼吸钟摆是由于肺泡通气不同步造成肺内气体重分布的现象,常见于存在肺损伤的重症人群。电阻抗断层成像技术的应用实现了对呼吸钟摆的床旁、无创、定量测量。呼吸钟摆现象可导致局部肺泡过度膨胀、潮式肺复张和通气效率下降,存在加重肺损伤的风险,近年来备受关注。避免过强的吸气努力和改善肺泡异质性是控制呼吸钟摆的关键。本文主要介绍了呼吸钟摆的理论基础、临床意义和干预手段等,以期促进对该现象的理解和进一步研究。

Respiratory pendelluft, defined as intrapulmonary gas redistribution caused by asynchronous alveolar ventilation, is often seen among critically ill patients with lung injury. The application of electrical impedance tomography (EIT) enables the bedside, non-invasive and quantitative measurement of the respiratory pendelluft. Attention has been paid to pendelluft phenomenon in recent years for its potential to aggravate lung injury through inducing alveolar overdistension, tidal recruitment and decline of ventilation efficiency. To avoid excessive inspiratory effort and improve alveolar heterogeneity is the key to controlling pendelluft. This review mainly describes the theoretical basis, clinical relevance and intervention of respiratory pendelluft, with the hope of promoting the further understanding and study of this phenomenon.

图1 呼吸钟摆现象示意图。图a为吸气相或吸气末暂停期间,部分肺泡向相邻肺泡送气,呈呼气相改变;图b为呼气相或呼气末暂停期间,部分肺泡接受来自相邻肺泡的气体,呈吸气相改变(改编自参考文献13
表1 两种呼吸钟摆理论的对比
1
Brauer L. Erfahrungen und Überlegungen zur Lungenkollapstherapie [J]. Beiträge zur Klinik der Tuberkulose, 1909, 12: 49-154.
2
Otis AB, McKerrow CB, Bartlett RA, et al. Mechanical factors in distribution of pulmonary ventilation [J]. J Appl Physiol, 1956, 8(4): 427-443.
3
Yoshida T, Torsani V, Gomes S, et al. Spontaneous effort causes occult pendelluft during mechanical ventilation [J]. Am J Respir Crit Care Med, 2013, 188(12): 1420-1427.
4
Hedenstierna G, Bindslev L, Santesson J. Pressure-volume and airway closure relationships in each lung in anaesthetized man [J]. Clin Physiol, 1981, 1(5): 479-493.
5
Harada K, Saoyama N, Izumi K, et al. Experimental pendulum air in the flail chest [J]. Jpn J Surg, 1983, 13(3): 219-226.
6
Vyshedskiy A, Murphy R. Pendelluft in chronic obstructive lung disease measured with lung sounds [J]. Pulm Med, 2012, 2012: 139395.
7
Frerichs I, Amato MB, van Kaam AH, et al. Chest electrical impedance tomography examination, data analysis, terminology, clinical use and recommendations: consensus statement of the translational EIT development study group [J]. Thorax, 2017, 72(1): 83-93.
8
Tomicic V, Cornejo R. Lung monitoring with electrical impedance tomography: technical considerations and clinical applications [J]. J Thorac Dis, 2019, 11(7): 3122-3135.
9
Lopes FA, Souza LAM, Bernardi JTN, et al. Pendelluft diagnosed from ventilator weaning indexes obtained through bioelectrical impedance tomography: a case report [J]. Sao Paulo Med J, 2017, 135(3): 302-308.
10
Rossi FS, Costa ELV, Iope DDM, et al. Pendelluft detection using electrical impedance tomography in an Infant. Keep Those Images in Mind [J]. Am J Respir Crit Care Med, 2019, 200(11): 1427-1429.
11
He H, Yuan S, Yi C, et al. Titration of extra-PEEP against intrinsic-PEEP in severe asthma by electrical impedance tomography: A case report and literature review [J]. Medicine, 2020, 99(26): e20891.
12
Sang L, Zhao Z, Yun PJ, et al. Qualitative and quantitative assessment of pendelluft: a simple method based on electrical impedance tomography [J]. Ann Transl Med, 2020, 8(19): 1216.
13
Coppadoro A, Grassi A, Giovannoni C, et al. Occurrence of pendelluft under pressure support ventilation in patients who failed a spontaneous breathing trial: an observational study [J]. Ann Intensive Care, 2020, 10(1): 39.
14
Gonçalves-Ferri WA, Rossi FS, Costa ELV, et al. Lung recruitment and pendelluft resolution after less invasive surfactant administration in a preterm infant [J]. Am J Respir Crit Care Med, 2020, 202(5): 766-769.
15
Tabuchi A, Nickles HT, Kim M, et al. Acute lung injury causes asynchronous alveolar ventilation that can be corrected by individual sighs [J]. Am J Respir Crit Care Med, 2016, 193(4): 396-406.
16
Tsuzaki K, Hales CA, Strieder DJ, et al. Regional lung mechanics and gas transport in lungs with inhomogeneous compliance [J]. J Appl Physiol, 1993, 75(1): 206-216.
17
Coppadoro A, Eronia N, Foti G, et al. Event-triggered averaging of electrical impedance tomography (EIT) respiratory waveforms as compared to low-pass filtering for removal of cardiac related impedance changes [J]. J Clin Monit Comput, 2020, 34(3): 553-558.
18
Chang HK. Mechanisms of gas transport during ventilation by high-frequency oscillation [J]. J Appl Physiol Respir Environ Exerc Physiol, 1984, 56(3): 553-563.
19
Alzahrany M, Banerjee A, Salzman G. Flow transport and gas mixing during invasive high frequency oscillatory ventilation [J]. Med Eng Phys, 2014, 36(6): 647-658.
20
Alzahrany M, Banerjee A. A biomechanical model of pendelluft induced lung injury [J]. J Biomech, 2015, 48(10): 1804-1810.
21
Yoshida T, Amato MBP, Kavanagh BP, et al. Impact of spontaneous breathing during mechanical ventilation in acute respiratory distress syndrome [J]. Curr Opin Crit Care, 2019, 25(2): 192-198.
22
Yoshida T, Nakahashi S, Nakamura MAM, et al. Volume-controlled ventilation does not prevent injurious inflation during spontaneous effort [J]. Am J Respir Crit Care Med, 2017, 196(5): 590-601.
23
Yoshida T, Roldan R, Beraldo MA, et al. Spontaneous effort during mechanical ventilation: maximal injury with less positive end-expiratory pressure [J]. Crit Care Med, 2016, 44(8): e678-688.
24
Morais CCA, Koyama Y, Yoshida T, et al. High positive end-expiratory pressure renders spontaneous effort noninjurious [J]. Am J Respir Crit Care Med, 2018, 197(10): 1285-1296.
25
Zhou Y, Luo X, Wang Y, et al. Pendelluft volume during double-triggered asynchronous breaths under pressure support ventilation: a prospective physiological study [J]. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue, 2021, 33(6): 680-685.
26
Shinozuka N, Sato J, Kohchi A, et al. Pendelluft is not the major contributor to respiratory insufficiency in dogs with flail chest: a mathematical analysis [J]. J Anesth, 1995, 9(3): 252-259.
27
Spinelli E, Mauri T, Beitler JR, et al. Respiratory drive in the acute respiratory distress syndrome: pathophysiology, monitoring, and therapeutic interventions [J]. Intensive Care Med, 2020, 46(4): 606-618.
28
Pellegrini M, Hedenstierna G, Larsson AS, et al. Inspiratory efforts, positive end-expiratory pressure, and external resistances influence intraparenchymal gas redistribution in mechanically ventilated injured lungs [J]. Front Physiol, 2020, 11: 618640.
29
Hraiech S, Yoshida T, Annane D, et al. Myorelaxants in ARDS patients [J]. Intensive Care Med, 2020, 46(12): 2357-2372.
30
Moss M, Huang DT, Brower RG, et al. Early neuromuscular blockade in the acute respiratory distress syndrome [J]. N Engl J Med, 2019, 380(21): 1997-2008.
31
Schepens T, Dres M, Heunks L, et al. Diaphragm-protective mechanical ventilation [J]. Curr Opin Crit Care, 2019, 25(1): 77-85.
32
Goligher EC, Brochard LJ, Reid WD, et al. Diaphragmatic myotrauma: a mediator of prolonged ventilation and poor patient outcomes in acute respiratory failure [J]. Lancet Respir Med, 2019, 7(1): 90-98.
33
Goligher EC, Dres M, Fan E, et al. Mechanical ventilation-induced diaphragm atrophy strongly impacts clinical outcomes [J]. Am J Respir Crit Care Med, 2018, 197(2): 204-213.
34
Doorduin J, Nollet JL, Roesthuis LH, et al. Partial neuromuscular blockade during partial ventilatory support in sedated patients with high tidal volumes [J]. Am J Respir Crit Care Med, 2017, 195(8): 1033-1042.
35
Greenblatt EE, Butler JP, Venegas JG, et al. Pendelluft in the bronchial tree [J]. J Appl Physiol, 2014, 117(9): 979-988.
36
Sahetya SK, Goligher EC, Brower RG. Fifty years of research in ARDS. setting positive end-expiratory pressure in acute respiratory distress syndrome [J]. Am J Respir Crit Care Med, 2017, 195(11): 1429-1438.
37
Enokidani Y, Uchiyama A, Yoshida T, et al. Effects of ventilatory settings on pendelluft phenomenon during mechanical ventilation [J]. Respir Care, 2021, 66(1): 1-10.
38
Santini A, Mauri T, Dalla Corte F, et al. Effects of inspiratory flow on lung stress, pendelluft, and ventilation heterogeneity in ARDS: a physiological study [J]. Crit Care, 2019, 23(1): 369.
39
Gattinoni L, Busana M, Giosa L, et al. Prone positioning in acute respiratory distress syndrome [J]. Semin Respir Crit Care Med, 2019, 40(1): 94-100.
40
Carteaux G, Parfait M, Combet M, et al. Patient-self inflicted lung injury: a practical review [J]. J Clin Med, 2021, 10(12): 2738.
[1] 梁哲浩, 方明笋, 胡弘毅, 陶涛, 徐孝平, 孙华琴. 基于生物信息学分析筛选脓毒症诱导急性肺损伤的关键基因[J]. 中华危重症医学杂志(电子版), 2022, 15(05): 360-366.
[2] 吴芳伟, 安向丽, 谢晓宁. 调控骨桥蛋白介导的中性粒细胞浸润减轻脓毒症小鼠肺损伤的研究[J]. 中华危重症医学杂志(电子版), 2022, 15(03): 220-225.
[3] 沈纵, 魏晨如, 朱邦晖, 包郁露, 伍国胜, 孙瑜. 间充质干细胞治疗吸入性损伤的动物实验研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(02): 180-183.
[4] 蔡维霞, 曹涛, 赵明, 肖丹, 贾艳慧, 王璟, 张月, 王克甲, 韩军涛, 胡大海. Notch信号通路对烧伤大鼠血清诱导的肺血管内皮细胞细胞间黏附分子-1的影响[J]. 中华损伤与修复杂志(电子版), 2022, 17(04): 292-299.
[5] 熊欢庆, 李玉娟, 陈键, 刘刚, 李志超, 金发光. 丹参酮IIA及苦参碱组方对脂多糖致小鼠急性肺损伤的协同保护作用[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 455-459.
[6] 董红雪, 沈玥, 鲁静, 帅维正, 高苗莉, 陶莎. 俯卧位机械通气在慢性阻塞性肺疾病急性加重期的临床应用[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 263-265.
[7] 李埝, 赵建军, 张建勇, 赵睿桢. hAMSCs调控MAPK信号通路对急性肺损伤AQP1的影响[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 156-163.
[8] 伍正彬, 邵世锋, 李阳, 王耀丽. 高原爆炸性肺损伤院前急救和早期救治策略[J]. 中华肺部疾病杂志(电子版), 2022, 15(05): 746-749.
[9] 吴志军, 田伟, 任欢, 董文. 非小细胞肺癌调强放疗致放射性肺损伤风险的预测[J]. 中华肺部疾病杂志(电子版), 2022, 15(04): 560-562.
[10] 朱冠能, 汪洋, 宋海苗, 汪骏东. 血清铁蛋白及C反应蛋白水平对胸部创伤后急性肺损伤的预测意义[J]. 中华肺部疾病杂志(电子版), 2022, 15(03): 379-381.
[11] 阳莹, 崔亚梅, 邵强, 赵宁, 陶文强, 陈家泉, 徐泽尧, 钱克俭, 刘芬. 线粒体自噬对肺泡巨噬细胞焦亡的调控作用及其机制[J]. 中华重症医学电子杂志, 2023, 09(01): 69-77.
[12] 王晶晶, 谢晖, 王瑞兰. 电阻抗断层成像监测俯卧位通气的发展现状[J]. 中华重症医学电子杂志, 2023, 09(01): 35-39.
[13] 常炜, 刘玲. 呼吸驱动及呼吸努力床旁评估的研究进展[J]. 中华重症医学电子杂志, 2023, 09(01): 25-29.
[14] 刘玲, 赵慧颖, 李绪言, 程渊, 罗巧侠, 俞云, 杨毅, 邱海波. 新型冠状病毒肺炎患者自主呼吸努力的床旁监测方法[J]. 中华重症医学电子杂志, 2022, 08(04): 367-370.
[15] 单秋洁, 孙立柱, 徐宜全, 王之霞, 徐妍, 马浩, 刘田田. 中老年食管癌患者调强放射治疗期间放射性肺损伤风险模型构建及应用[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 388-393.
阅读次数
全文


摘要