切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2022, Vol. 08 ›› Issue (01) : 80 -84. doi: 10.3877/cma.j.issn.2096-1537.2022.01.012

综述

急性肺损伤时肺部微环境介导的细胞代谢变化的研究进展
陈梦婷1, 孟潇潇1, 王瑞兰1,()   
  1. 1. 201620 上海交通大学附属第一人民医院急诊危重病科
  • 收稿日期:2021-05-26 出版日期:2022-02-28
  • 通信作者: 王瑞兰

Research progress of pulmonary microenvironment-mediated changes in cell metabolism in acute lung injury

Mengting Chen1, Xiaoxiao Meng1, Ruilan Wang1,()   

  1. 1. Department of ICU, Shanghai General Hospital, Shanghai 201620, China
  • Received:2021-05-26 Published:2022-02-28
  • Corresponding author: Ruilan Wang
引用本文:

陈梦婷, 孟潇潇, 王瑞兰. 急性肺损伤时肺部微环境介导的细胞代谢变化的研究进展[J]. 中华重症医学电子杂志, 2022, 08(01): 80-84.

Mengting Chen, Xiaoxiao Meng, Ruilan Wang. Research progress of pulmonary microenvironment-mediated changes in cell metabolism in acute lung injury[J]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2022, 08(01): 80-84.

急性肺损伤(ALI)是临床上常见的肺部病变之一,病理表现为严重的肺水肿和透明膜形成,引起肺内微环境的改变。代谢学是通过监测生物体内源性代谢产物的变化(如糖类、脂类和氨基酸),来反映机体的生理或者病理状态。鉴于人体肺部的代谢活跃,近年来大量研究表明,肺部微环境介导的细胞代谢学变化对于ALI的发生具有重要意义,并为ALI患者的早期预警、诊断及其治疗提供了一种崭新的手段。本文就细胞代谢改变在ALI中的应用及其研究进展做简要综述。

Acute lung injury (ALI) is one of the most common clinical lung lesions. Its pathological manifestations are severe pulmonary edema and hyaline membrane formation, which cause changes in the pulmonary microenvironment. Metabolomics monitored the changes in endogenous metabolites (such as sugars, lipids, and amino acids) to reflect the physiological or pathological state of an organism. In view of the active metabolism of human lungs, a large amount of studies in recent years have shown that the changes in cell metabolism mediated by pulmonary microenvironment are of great significance for the occurrence of ALI, and provide a new means for the early warning, diagnosis and treatment of ALI patients. In this paper, the application and research progress of cellular metabolic changes in ALI are briefly reviewed.

1
Bos LD, van Walree IC, Kolk AH, et al. Alterations in exhaled breath metabolite-mixtures in two rat models of lipopolysaccharide-induced lung injury [J]. J Appl Physiol (1985), 2013, 115(10): 1487-1495.
2
Worrell JC, Macleod MKL. Stromal-immune cell crosstalk fundamentally alters the lung microenvironment following tissue insult [J]. Immunology, 2021, 163(3): 239-249.
3
Young MR. Endothelial cells in the eyes of an immunologist [J]. Cancer Immunol Immunoth, 2012, 61(10): 1609-1616.
4
杨毅, 邱海波. 急性呼吸窘迫综合征救治:需要遵循的十大原则 [J/OL]. 中华重症医学电子杂志, 2015, 1(1): 33-38.
5
Hautbergue T, Jamin EL, Debrauwer L, et al. From genomics to metabolomics, moving toward an integrated strategy for the discovery of fungal secondary metabolites [J]. Nat Prod Rep, 2018, 35(2): 147-173.
6
Cui L, Zheng D, Lee YH, et al. Metabolomics investigation reveals metabolite mediators associated with acute lung injury and repair in a murine model of influenza pneumonia [J]. Sci Rep, 2016, 6: 26076.
7
宋偲婷, 刘智玲, 张义雄, 等. 代谢组学测定对急性百草枯中毒大鼠的判定作用 [J]. 中华危重病急救医学, 2016, 28(4): 329-333.
8
宋嘉振, 李德馨. 肺的代谢功能 [J]. 国外医学·麻醉学与复苏分册, 1985, (6): 241-245.
9
Antonioli L, Blandizzi C, Pacher P, et al. Immunity, inflammation and cancer: a leading role for adenosine [J]. Nat Rev Cancer, 2013, 13(12): 842-857.
10
Eltzschig HK, Sitkovsky MV, Robson SC. Purinergic signaling during inflammation [J]. N Engl J Med, 2012, 367(24): 2322-2333.
11
Idzko M, Ferrari D, Eltzschig HK. Nucleotide signalling during inflammation [J]. Nature, 2014, 509(7500): 310-317.
12
Wu D, Birukov K. Endothelial cell mechano-metabolomic coupling to disease states in the lung microvasculature [J]. Front Bioeng Biotechnol, 2019, 7: 172.
13
Eckle T, Brodsky K, Bonney M, et al. HIF1A reduces acute lung injury by optimizing carbohydrate metabolism in the alveolar epithelium [J]. PLoS Biol, 2013, 11(9): e1001665.
14
Nadeem A, Al-Harbi NO, Ahmad SF, et al. Glucose-6-phosphate dehydrogenase inhibition attenuates acute lung injury through reduction in NADPH oxidase-derived reactive oxygen species [J]. Clin Exp Immunol, 2018, 191(3): 279-287.
15
Li X, Wu J, Sun X, et al. Autophagy reprograms alveolar progenitor cell metabolism in response to lung injury [J]. Stem Cell Reports, 2020, 14(3): 420-432.
16
Li K, Li M, Li W, et al. Airway epithelial regeneration requires autophagy and glucose metabolism [J]. Cell Death Dis, 2019, 10(12): 875.
17
Shi J, Yu T, Song K, et al. Dexmedetomidine ameliorates endotoxin-induced acute lung injury in vivo and in vitro by preserving mitochondrial dynamic equilibrium through the HIF-1a/HO-1 signaling pathway [J]. Redox Biol, 2021, 41: 101954.
18
Harris AJ, Mirchandani AS, Lynch RW, et al. IL4Rα signaling abrogates hypoxic neutrophil survival and limits acute lung injury responses in vivo [J]. Am J Respir Crit Care Med, 2019, 200(2): 235-246.
19
Zhong WJ, Yang HH, Guan XX, et al. Inhibition of glycolysis alleviates lipopolysaccharide-induced acute lung injury in a mouse model [J]. J Cell Physiol, 2019, 234(4): 4641-4654.
20
Gong Y, Lan H, Yu Z, et al. Blockage of glycolysis by targeting PFKFB3 alleviates sepsis-related acute lung injury via suppressing inflammation and apoptosis of alveolar epithelial cells [J]. Biochem Biophys Res Commun, 2017, 491(2): 522-529.
21
Chen J, Jin Y, Yang Y, et al. Epithelial dysfunction in lung diseases: effects of amino acids and potential mechanisms [J]. Adv Exp Med Biol, 2020, 1265: 57-70.
22
Sever N, Miličić G, Bodnar NO, et al. Mechanism of lamellar body formation by lung surfactant protein B [J]. Mol Cell, 2021, 81(1): 49-66.
23
汪衍敏, 王艳娟, 赵龙山, 等. 基于UPLC-MS/MS的热毒宁注射液治疗大鼠急性肺损伤的血浆代谢组学研究 [J]. 沈阳药科大学学报, 2018, 35(5): 374-380.
24
Bulau P, Zakrzewicz D, Kitowska K, et al. Analysis of methylarginine metabolism in the cardiovascular system identifies the lung as a major source of ADMA [J]. Am J Physiol Lung Cell Mol Physiol, 2007, 292(1): L18-24.
25
Naz S, Garcia A, Rusak M, et al. Method development and validation for rat serum fingerprinting with CE-MS: application to ventilator-induced-lung-injury study [J]. Anal Bioanal Chem, 2013, 405(14): 4849-4858.
26
Inoue S, Ikeda H. Differences in plasma amino acid levels in patients with and without bacterial infection during the early stage of acute exacerbation of COPD [J]. Int J Chron Obstruct Pulmon Dis, 2019, 14: 575-583.
27
杨文宏, 邱方. 谷氨酰胺对急性肺损伤的保护作用及机制 [J]. 中国医药指南, 2012, 10(18): 490-492.
28
Vigeland CL, Beggs HS, Collins SL, et al. Inhibition of glutamine metabolism accelerates resolution of acute lung injury [J]. Physiol Rep, 2019, 7(5): e14019.
29
Gordon EB, Hart GT, Tran TM, et al. Targeting glutamine metabolism rescues mice from late-stage cerebral malaria [J]. Proc Natl Acad Sci USA, 2015, 112(42): 13075-13080.
30
Lai CC, Liu WL, Chen CM. Glutamine attenuates acute lung injury caused by acid aspiration [J]. Nutrients, 2014, 6(8): 3101-3116.
31
Chuang YC, Shaw HM, Chen CC, et al. Short-term glutamine supplementation decreases lung inflammation and the receptor for advanced glycation end-products expression in direct acute lung injury in mice [J]. BMC Pulm Med, 2014, 14: 115.
32
Zhang Y, Ma X, Jiang D, et al. Glycine attenuates lipopolysaccharide-induced acute lung injury by regulating NLRP3 inflammasome and NRF2 signaling [J]. Nutrients, 2020, 12(3): 611.
33
Zhang Y, Yu W, Han D, et al. L-lysine ameliorates sepsis-induced acute lung injury in a lipopolysaccharide-induced mouse model [J]. Biomed Pharmacother, 2019, 118: 109307.
34
Zhang Sy, Shao D, Liu H, et al. Metabolomics Analysis Reveals That benzo[a]pyrene, a component of PM2.5, promotes pulmonary injury by modifying lipid metabolism in a phospholipase A2-dependent manner in vivo and in vitro [J]. Redox Biol, 2017, 13: 459-469.
35
Bottemanne P, Paquot A, Ameraoui H, et al. 25-Hydroxycholesterol metabolism is altered by lung inflammation, and its local administration modulates lung inflammation in mice [J]. FASEB J, 2021, 35(4): e21514.
36
Lopez-Rodriguez E, Gay-Jordi G, Mucci A, et al. Lung surfactant metabolism: early in life, early in disease and target in cell therapy [J]. Cell Tissue Res, 2017, 367(3): 721-735.
37
Yoder M, Zhuge Y, Yuan Y, et al. Bioactive lysophosphatidylcholine 16∶0 and 18∶0 are elevated in lungs of asthmatic subjects [J]. Allergy Asthma Immunol Res, 2014, 6(1): 61-65.
38
Izquierdo-García JL, Naz S, Nin N, et al. A metabolomic approach to the pathogenesis of ventilator-induced lung injury [J]. Anesthesiology, 2014, 120(3): 694-702.
39
Zambelli V, Di Grigoli G, Scanziani M, et al. Time course of metabolic activity and cellular infiltration in a murine model of acid-induced lung injury [J]. Intensive Care Med, 2012, 38(4): 694-701.
40
Mills EL, O'Neill LA. Reprogramming mitochondrial metabolism in macrophages as an anti-inflammatory signal [J]. Euro J Immunol, 2016, 46(1): 13-21.
41
Schoors S, Bruning U, Missiaen R, et al. Fatty acid carbon is essential for dNTP synthesis in endothelial cells [J]. Nature, 2015, 520(7546): 192-197.
42
Cui H, Xie N, Banerjee S, et al. Impairment of fatty acid oxidation in alveolar epithelial cells mediates acute lung injury [J]. American journal of respiratory cell and molecular biology, 2019, 60(2): 167-178.
[1] 梁哲浩, 方明笋, 胡弘毅, 陶涛, 徐孝平, 孙华琴. 基于生物信息学分析筛选脓毒症诱导急性肺损伤的关键基因[J]. 中华危重症医学杂志(电子版), 2022, 15(05): 360-366.
[2] 赵希伟, 周佳伟, 刘凯, 侯林义, 张文凯. 连接蛋白43通过蛋白激酶A介导丝氨酸373调控脓毒症急性肺损伤肺泡Ⅱ型上皮细胞屏障功能的研究[J]. 中华危重症医学杂志(电子版), 2021, 14(05): 355-361.
[3] 黄一桂, 陈钰, 符征高, 钟培雄, 许玖莎, 郝金香. 血浆单核细胞趋化蛋白1、可溶性髓系细胞触发受体1及高迁移率族蛋白B1水平对急性肺损伤患者病情及预后的评估价值[J]. 中华危重症医学杂志(电子版), 2021, 14(01): 25-29.
[4] 孙雪东, 严一核, 褚韦韦, 刘芳, 应利君, 陈建东. 高迁移率族蛋白B1 / Toll样受体4信号通路在脓毒症大鼠致急性肺损伤中的作用研究[J]. 中华危重症医学杂志(电子版), 2020, 13(06): 419-426.
[5] 沈纵, 魏晨如, 朱邦晖, 包郁露, 伍国胜, 孙瑜. 间充质干细胞治疗吸入性损伤的动物实验研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(02): 180-183.
[6] 蔡维霞, 曹涛, 赵明, 肖丹, 贾艳慧, 王璟, 张月, 王克甲, 韩军涛, 胡大海. Notch信号通路对烧伤大鼠血清诱导的肺血管内皮细胞细胞间黏附分子-1的影响[J]. 中华损伤与修复杂志(电子版), 2022, 17(04): 292-299.
[7] 周强, 赵烨德, 王雨翔, 肖仕初. 烧伤合并烟雾吸入性肺损伤病理机制和治疗研究新进展[J]. 中华损伤与修复杂志(电子版), 2022, 17(02): 171-175.
[8] 熊欢庆, 李玉娟, 陈键, 刘刚, 李志超, 金发光. 丹参酮IIA及苦参碱组方对脂多糖致小鼠急性肺损伤的协同保护作用[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 455-459.
[9] 李埝, 赵建军, 张建勇, 赵睿桢. hAMSCs调控MAPK信号通路对急性肺损伤AQP1的影响[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 156-163.
[10] 朱冠能, 汪洋, 宋海苗, 汪骏东. 血清铁蛋白及C反应蛋白水平对胸部创伤后急性肺损伤的预测意义[J]. 中华肺部疾病杂志(电子版), 2022, 15(03): 379-381.
[11] 许发琼, 贺斌峰, 黄朝旺, 胡明冬. 非编码RNA调控巨噬细胞炎症反应在ALI/ARDS中的研究进展[J]. 中华肺部疾病杂志(电子版), 2021, 14(05): 677-680.
[12] 顾艳利, 宋勇, 张方. 姜黄素在肺部炎症性疾病中的免疫调节作用[J]. 中华肺部疾病杂志(电子版), 2021, 14(04): 539-542.
[13] 袁高洁, 李忠俊. 输血相关急性肺损伤的研究进展[J]. 中华肺部疾病杂志(电子版), 2021, 14(03): 397-399.
[14] 雷莲莲, 李力, 毕婧. 胃饥饿素对小鼠急性肺损伤的保护作用及其机制研究[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(02): 83-89.
[15] 胡俊晟, 黄荣, 黄毅, 曾光, 金永志, 李梦帆. 丹参多酚酸盐通过Nrf2/HO-1信号通路对脂多糖诱导的小鼠急性肺损伤的保护作用[J]. 中华临床医师杂志(电子版), 2021, 15(12): 1024-1030.
阅读次数
全文


摘要