切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2022, Vol. 08 ›› Issue (01) : 74 -79. doi: 10.3877/cma.j.issn.2096-1537.2022.01.011

综述

脓毒症与铁代谢的研究进展
李向惠1, 於江泉2,(), 王晶1   
  1. 1. 116044 大连医科大学研究生院
    2. 225001 江苏扬州,苏北人民医院重症医学科
  • 收稿日期:2021-03-16 出版日期:2022-02-28
  • 通信作者: 於江泉
  • 基金资助:
    江苏省“333工程”项目(BRA2020183); 江苏省六个一拔尖人才项目; 扬州市社会发展计划-面上项目(YZ2018075); 扬州市重点医学人才项目

Research progress of sepsis and iron metabolism

Xianghui Li1, Jiangquan Yu2,(), Jing Wang1   

  1. 1. Graduate School of Dalian Medical University, Dalian 116044, China
    2. Department of Intensive Care Unit, Northern Jiangsu People's Hospital, Yangzhou 225001, China
  • Received:2021-03-16 Published:2022-02-28
  • Corresponding author: Jiangquan Yu
引用本文:

李向惠, 於江泉, 王晶. 脓毒症与铁代谢的研究进展[J]. 中华重症医学电子杂志, 2022, 08(01): 74-79.

Xianghui Li, Jiangquan Yu, Jing Wang. Research progress of sepsis and iron metabolism[J]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2022, 08(01): 74-79.

脓毒症是一种由感染引起的常见的全身炎症反应综合征,具有高发病率和高病死率的特征,已成为重要的公共健康问题之一。脓毒症及其发病机制和治疗也一直是研究重点。2016年,脓毒症被重新定义为由宿主对感染的反应失调引起的危及生命的器官功能障碍模式。近年来,针对脓毒症患者的免疫反应及代谢变化开展了大量临床及实验研究,其中铁代谢与脓毒症的关系也是研究重点之一。铁在调节免疫功能和微生物生长方面有着关键作用,已有研究证明铁代谢的变化会影响感染的风险。本文旨在对铁代谢与脓毒症及脓毒症诱导的多器官功能障碍的关系等作简要概述,以期对脓毒症的预后预测及治疗提供新的方向。

Sepsis is a common systemic inflammatory response syndrome caused by infection, characterized by high incidence rate and high mortality. It has become one of the important public health problems. Therefore constant researches have been conducting focused on it and its pathogenesis and treatment. In 2016, sepsis was redefined as a life-threatening organ dysfunction pattern caused by the host's dysresponse to infection. In recent years, a great amount of clinical and experimental studies have been conducted on the immune response and metabolic changes of patients with sepsis, among which the relationship between iron and metabolism and sepsis is also one of the key points. Iron plays a key role in regulating immune function and microbial growth, and it has been shown that changes in iron metabolism can affect the risk of infection. In order to provide new directions for the prognosis prediction and treatment of sepsis, this paper aims to give a brief overview of the relationship between metabolism and sepsis and sepsis-induced multiple organ dysfunction.

1
Fleischmann C, Scherag A, Adhikari NK, et al. Assessment of global incidence and mortality of hospital-treated sepsis [J]. Am J Respir Crit Care Med, 2016, 193(3): 259-272.
2
Singer M, Deutschman CS, Seymour CW, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) [J]. JAMA, 2016, 315(8): 801-810.
3
Sakr Y, Jaschinski U, Wittebole X, et al. Sepsis in intensive care unit patients: worldwide data from the intensive care over nations audit [J]. Open Forum Infect Dis, 2018, 5(12): 313.
4
Weng L, Zeng XY, Yin P, et al. Sepsis-related mortality in China: a descriptive analysis [J]. Intensive Care Med, 2018, 44(7): 1071-1080.
5
Camaschella C, Nai A, Silvestri L. Iron metabolism and iron disorders revisited in the hepcidin era [J]. Haematologica, 2020, 105(2): 260-272.
6
Gulec S, Anderson GJ, Collins JF. Mechanistic and regulatory aspects of intestinal iron absorption [J]. Am J Physiol Gastrointest Liver Physiol, 2014, 307(4): 397-409.
7
Dong XP, Cheng X, Mills E, et al. The type Ⅳ mucolipidosis-associated protein TRPML1 is an endolysosomal iron release channel [J]. Nature, 2008, 455(7215): 992-996.
8
Gunshin H, Mackenzie B, Berger UV, et al. Cloning and characterization of a mammalian proton-coupled metal-ion transporter [J]. Nature, 1997, 388(6641): 482-488.
9
McKie AT, Marciani P, Rolfs A, et al. A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation [J]. Mol Cell, 2000, 5(2): 299-309.
10
Osaki S, Johnson DA, Frieden E. The possible significance of the ferrous oxidase activity of ceruloplasmin in normal human serum [J]. J Biol Chem, 1966, 241(12): 2746-2751.
11
Lu JP, Hayashi K, Awai M. Transferrin receptor expression in normal, iron-deficient and iron-overloaded rats [J]. Acta Pathol Jpn, 1989, 39(12): 759-764.
12
Li Y, Feng D, Wang Z, et al. Ischemia-induced ACSL4 activation contributes to ferroptosis-mediated tissue injury in intestinal ischemia/reperfusion [J]. Cell Death Differ, 2019, 26(11): 2284-2299.
13
von Haehling S, Jankowska EA, van Veldhuisen DJ, et al. Iron deficiency and cardiovascular disease [J]. Nat Rev Cardiol, 2015, 12(11): 659-669.
14
Ganz T. Iron and infection [J]. Int J Hematol, 2018, 107(1): 7-15.
15
Toyokuni S. Role of iron in carcinogenesis: cancer as a ferrotoxic disease [J]. Cancer Sci, 2009, 100(1): 9-16.
16
Tacke F, Nuraldeen R, Koch A, et al. Iron parameters determine the prognosis of critically ill patients [J]. Crit Care Med, 2016, 44(6): 1049-1058.
17
Beckman JS, Beckman TW, Chen J, et al. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide [J]. Proc Natl Acad Sci U S A, 1990, 87(4): 1620-1624.
18
吴勤英. 氧化应激水平与脓毒症患者预后的关系 [J]. 中国综合临床, 2013, 29(8): 799-802.
19
Zager RA, Johnson AC, Hanson SY. Parenteral iron therapy exacerbates experimental sepsis [J]. Kidney Int, 2004, 65(6): 2108-2112.
20
Galleano M, Simontacchi M, Puntarulo S. Nitric oxide and iron: effect of iron overload on nitric oxide production in endotoxemia [J]. Mol Aspects Med, 2004, 25(1-2): 141-154.
21
Javadi P, Buchman TG, Stromberg PE, et al. High-dose exogenous iron following cecal ligation and puncture increases mortality rate in mice and is associated with an increase in gut epithelial and splenic apoptosis [J]. Crit Care Med, 2004, 32(5): 1178-1185.
22
Kruszewski M. Labile iron pool: The main determinant of cellular response to oxidative stress [J]. Mutat Res, 2003, 531(1-2): 81-92.
23
Harrison PM, Arosio P. The ferritins: molecular properties, iron storage function and cellular regulation [J]. Biochim Biophys Acta, 1996, 1275(3): 161-203.
24
Knovich MA, Storey JA, Coffman LG, et al. Ferritin for the clinician [J]. Blood Rev, 2009, 23(3): 95-104.
25
Garcia PC, Longhi F, Branco RG, et al. Ferritin levels in children with severe sepsis and septic shock [J]. Acta Paediatr, 2007, 96(12): 1829-1831.
26
Bullen JJ, Rogers HJ, Spalding PB, et al. Iron and infection: the heart of the matter [J]. FEMS Immunol Med Microbiol, 2005, 43(3): 325-330.
27
Darveau M, Denault AY, Blais N, et al. Bench-to-bedside review: iron metabolism in critically ill patients [J]. Crit Care, 2004, 8(5): 356-362.
28
Ruddell RG, Hoang-Le D, Barwood JM, et al. Ferritin functions as a proinflammatory cytokine via iron-independent protein kinase C zeta/nuclear factor kappaB-regulated signaling in rat hepatic stellate cells [J]. Hepatology, 2009, 49(3): 887-900.
29
Moss D, Fargion S, Fracanzani AL, et al. Functional roles of the ferritin receptors of human liver, hepatoma, lymphoid and erythroid cells [J]. J Inorg Biochem, 1992, 47(3-4): 219-227.
30
Wang W, Knovich MA, Coffman LG, et al. Serum ferritin: Past, present and future [J]. Biochim Biophys Acta, 2010, 1800(8): 760-769.
31
Rosário C, Zandman-Goddard G, Meyron-Holtz EG, et al. The hyperferritinemic syndrome: macrophage activation syndrome, Still's disease, septic shock and catastrophic antiphospholipid syndrome [J]. BMC Med, 2013, 11: 185.
32
Zarjou A, Black LM, McCullough KR, et al. Ferritin light chain confers protection against sepsis-induced inflammation and organ injury [J]. Front Immunol, 2019, 10: 131.
33
常春康, 张曦, 肖超, 等. 铁调素的表达与调节机制研究进展 [J]. 中国实验血液学杂志, 2012, 20(4): 1030-1033.
34
Ganz T, , Nemeth E. Imports iron. Ⅳ. Hepcidin and regulation of body iron metabolism [J]. Am J Physiol Gastrointest Liver Physiol, 2006, 290(2): 199-203.
35
Nicolae CD, Coman OA, Ene C, et al. Hepcidin in neoplastic disease [J]. J Med Life, 2013, 6(3): 355-360.
36
Cizmeci MN, Kara S, Kanburoglu MK, et al. Detection of cord blood hepcidin levels as a biomarker for early-onset neonatal sepsis [J]. Med Hypotheses, 2014, 82(3): 310-312.
37
Kemna E, Pickkers P, , Nemeth E, et al. Time-course analysis of hepcidin, serum iron, and plasma cytokine levels in humans injected with LPS [J]. Blood, 2005, 106(5): 1864-1866.
38
van Eijk LT, Kroot JJ, Tromp M, et al. Inflammation-induced hepcidin-25 is associ-ated with the development of anemia in septic patients: An observational study [J]. Crit Care, 2011, 15(1): R9.
39
Zeng C, Chen Q, Zhang K,et al. Hepatic hepcidin protects against polymicrobial sepsis in mice by regulating host iron status [J]. Anesthesiology, 2015, 122(2): 374-386.
40
Kothary V, Doster RS, Rogers LM, et al. Group B Streptococcus induces neutrophil recruitment to gestational tissues and elaboration of extracellular traps and nutritional immunity [J]. Front Cell Infect Microbiol, 2017, 7: 19.
41
Halder lD, Abdelfatah MA, Jo EA, et al. Factor H binds to extracellular DNA traps released from human blood monocytes in response to Candida albicans [J]. Front Immunol, 2017, 7: 671.
42
Iglesias-Figueroa B, Valdiviezo-Godina N, Siqueiros-Cendón T, et al. High-level expression of recombinant bovine lactoferrin in pichia pastoris with antimicrobial activity [J]. Int J Mol Sci, 2016, 17(6): 902.
43
Bruns T, Nuraldeen R, Mai M, et al. Low serum transferrin correlates with acute-on-chronic organ failure and indicates short-term mortality in decompensated cirrhosis [J]. Liver Int, 2017, 37(2): 232-241.
44
Valenti A, Antonini G. Lactoferrin: an important host defense against microbial and viral attack [J]. Cell Mol Life Sci, 2005, 62(22): 2576-2587.
45
Legrand D, Pierce A, Elass E, et al. Lactoferrin structure and functions [J]. Adv Exp Med Biol, 2008, 606: 163-94.
46
Baveye S, Elass E, Mazurier J, et al. Lactoferrin: A multifunctional glycoprotein involved in the modulation of the inflammatory process [J]. Clin Chem Lab Med, 1999, 37(3): 281-286.
47
Legrand D, Elass E, Carpentier M, et al. Lactoferrin: a modulator of immune and inflammatory responses [J]. Cell Mol Life Sci, 2005, 62(22): 2549-2559.
48
Lu YC, Yeh WC, Ohashi PS. LPS/TLR4 signal transduction pathway [J]. Cytokine,2008, 42(2): 145-151.
49
Kruzel ML, Harari Y, Mailman D, et al. Differential effects of prophylactic, concurrent and therapeutic lactoferrin treatment on LPS-induced inflammatory responses in mice [J]. Clin Exp Immunol, 2002, 130(1): 25-31.
50
Wang C, Yuan W, Hu A, et al. Dexmedetomidine alleviated sepsisinduced myocardial ferroptosis and septic heart injury [J]. Mol Med Rep, 2020, 22(1): 175-184.
51
Duvigneau JC, Piskernik C, Haindl S, et al. A novel endotoxin-induced pathway: upregulation of heme oxygenase 1, accumulation of free iron, and free iron-mediated mitochondrial dysfunction [J]. Lab Invest, 2008, 88(1): 70-77.
52
Schwartzman ML, Abraham NG, Carroll MA, et al. Regulation of arachidonic acid metabolism by cytochrome P-450 in rabbit kidney [J]. Biochem J, 1986, 238(1): 283-290.
53
Fang S, Zhuo Z, Yu X, et al. Oral administration of liquid iron preparation containing excess iron induces intestine and liver injury, impairs intestinal barrier function and alters the gut microbiota in rats [J]. J Trace Elem Med Biol, 2018, 47: 12-20.
54
Trinder D, Fox C, Vautier G, et al. Molecular pathogenesis of iron overload [J]. Gut, 2002, 51(2): 290-295.
55
Rao RK, Baker RD, Baker SS, et al. Oxidant-induced disruption of intestinal epithelial barrier function: role of protein tyrosine phosphorylation [J]. Am J Physiol, 1997, 273(4): 812-823.
56
Rao RK, Basuroy S, Rao VU, et al. Tyrosine phosphorylation and dissociation of occludin-ZO-1 and E-cadherin-beta-catenin complexes from the cytoskeleton by oxidative stress [J]. Biochem J, 2002, 368(2): 471-481.
57
Zhang V, Ganz T, Nemeth E, et al. Iron overload causes a mild and transient increase in acute lung injury [J]. Physiol Rep, 2020, 8(12): 14470.
58
Deschemin JC, Mathieu JRR, Zumerle S, et al. Pulmonary Iron Homeostasis in Hepcidin Knockout Mice [J]. Front Physiol, 2017, 8: 804.
59
Wang C, Yuan W, Hu A, et al. Dexmedetomidine alleviated sepsisinduced myocardial ferroptosis and septic heart injury [J]. Mol Med Rep, 2020, 22(1): 175-184.
60
Hardang IM, Lilleholt K, Hagve TA. Anemi ved kronisk sykdom [J]. Tidsskr Nor Laegeforen, 2017, 137(17): 10.
61
Kalinowski DS, Richardson DR. The evolution of iron chelators for the treatment of iron overload disease and cancer [J]. Pharmacol Rev, 2005, 57(4): 547-583.
62
Dragset MS, Poce G, Alfonso S, et al. A novel antimycobacterial compound acts as an intracellular iron chelator [J]. Antimicrob Agents Chemother, 2015, 59(4): 2256-2264.
63
Vlahakos D, Arkadopoulos N, Kostopanagiotou G, et al. Deferoxamine attenuates lipid peroxidation, blocks interleukin-6 production, ameliorates sepsis inflammatory response syndrome, and confers renoprotection after acute hepatic ischemia in pigs [J]. Artif Organs, 2012, 36(4): 400-408.
64
Cermanova J, Kadova Z, Dolezelova E, et al. Deferoxamine but not dexrazoxane alleviates liver injury induced by endotoxemia in rats [J]. Shock, 2014, 42(4): 372-379.
65
Vulcano M, Meiss RP, Isturiz MA. Deferoxamine reduces tissue injury and lethality in LPS-treated mice [J]. Int J Immunopharmacol, 2000, 22(8): 635-644.
66
Messaris E, Antonakis PT, Memos N, et al. Deferoxamine administration in septic animals: improved survival and altered apoptotic gene expression [J]. Int Immunopharmacol, 2004, 4(3): 455-459.
67
Bullen JJ, Rogers HJ, Spalding PB, et al. Iron and infection: the heart of the matter [J]. FEMS Immunol Med Microbiol, 2005, 43(3): 325-330.
68
van Eijk LT, Heemskerk S, van der Pluijm RW, et al. The effect of iron loading and iron chelation on the innate immune response and subclinical organ injury during human endotoxemia: a randomized trial [J]. Haematologica, 2014, 99(3): 579-587.
69
Scindia Y, Wlazlo E, Leeds J, et al. Protective Role of Hepcidin in Polymicrobial Sepsis and Acute Kidney Injury [J]. Front Pharmacol, 2019, 10: 615.
70
Ellison RT, Giehl TJ, LaForce FM. Damage of the outer membrane of enteric gram-negative bacteria by lactoferrin and transferrin [J]. Infect Immun, 1988, 56(11): 2774-2781.
71
Guntupalli K, Dean N, Morris PE, et al. A phase 2 randomized, double-blind, placebo-controlled study of the safety and efficacy of talactoferrin in patients with severe sepsis [J]. Crit Care Med, 2013, 41(3): 706-716.
72
Vincent JL, Marshall JC, Dellinger RP, et al. Talactoferrin in severe sepsis: results from the phase Ⅱ/Ⅲ oral tAlactoferrin in severe sepsis trial [J]. Crit Care Med, 2015, 43(9): 1832-1838.
[1] 韩媛媛, 热孜亚·萨贝提, 冒智捷, 穆福娜依·艾尔肯, 陆晨, 桑晓红, 阿尔曼·木拉提, 张丽. 组合式血液净化治疗对脓毒症患者血清炎症因子水平和临床预后的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 272-278.
[2] 孟建标, 张庚, 焦燕娜. 脓毒症合并心功能障碍患者早期肠道微生态改变的探讨[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 279-285.
[3] 陈宇, 冯芳, 张露, 刘健. 基于生物信息学分析筛选脓毒症心肌病关键致病基因[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 286-291.
[4] 作者. 脓毒症与脓毒性休克[J]. 中华危重症医学杂志(电子版), 2023, 16(03): 0-.
[5] 莫小乔, 胡喆莹, 廖冬花, 谢天. 脓毒症继发急性肾损伤患者死亡风险预测模型构建及评估[J]. 中华危重症医学杂志(电子版), 2023, 16(03): 198-206.
[6] 张晓燕, 肖东琼, 高沪, 陈琳, 唐发娟, 李熙鸿. 转录因子12过表达对脓毒症相关性脑病大鼠大脑皮质的保护作用及其机制[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 540-549.
[7] 魏徐, 张鸽, 伍金林. 新生儿脓毒症相关性凝血病的监测和治疗[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 379-386.
[8] 姚咏明. 如何精准评估烧伤脓毒症患者免疫状态[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 552-552.
[9] 窦上文, 邓欢, 刘邦锋, 岳高远志, 朱华财, 刘永达. 术前复查尿培养在预测微通道经皮肾镜取石术相关感染并发症中的作用[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 361-366.
[10] 邵浩仁, 郭佳. 铁死亡的分子机制及其在前列腺癌治疗中的研究进展[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(03): 294-298.
[11] 李伟, 卓剑, 黄川, 黄有攀. Lac、HO-1、sRAGE、CRP/ALB表达及脓毒症并发ARDS危险因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 514-516.
[12] 苗软昕, 乔晞. Toll样受体在脓毒症性急性肾损伤中的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 210-214.
[13] 陆猛桂, 黄斌, 李秋林, 何媛梅. 蜂蛰伤患者发生多器官功能障碍综合征的危险因素分析[J]. 中华临床医师杂志(电子版), 2023, 17(9): 1010-1015.
[14] 谭睿, 王晶, 於江泉, 郑瑞强. 脓毒症中高密度脂蛋白、载脂蛋白A-I和血清淀粉样蛋白A的作用研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(06): 749-753.
[15] 蔡荇, 郑瑞强. 肝素结合蛋白在脓毒症中的应用及研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(04): 487-490.
阅读次数
全文


摘要