切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2022, Vol. 08 ›› Issue (04) : 371 -377. doi: 10.3877/cma.j.issn.2096-1537.2022.04.016

综述

影像技术和分子生物标志物在重症患者骨骼肌质量评价中的应用
姚晏1, 黄惠斌1,()   
  1. 1. 102218 北京,清华大学临床医学院 清华大学附属北京清华长庚医院重症医学科
  • 收稿日期:2022-10-17 出版日期:2022-11-28
  • 通信作者: 黄惠斌
  • 基金资助:
    吴阶平医学基金会临床科研专项资助基金(320.6750.2022-02-18)

Assessment of muscle mass in critically ill patients: role of the molecular biomarkers and images studies

Yan Yao1, Huibin Huang1,()   

  1. 1. Department of Critical Care Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
  • Received:2022-10-17 Published:2022-11-28
  • Corresponding author: Huibin Huang
引用本文:

姚晏, 黄惠斌. 影像技术和分子生物标志物在重症患者骨骼肌质量评价中的应用[J]. 中华重症医学电子杂志, 2022, 08(04): 371-377.

Yan Yao, Huibin Huang. Assessment of muscle mass in critically ill patients: role of the molecular biomarkers and images studies[J]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2022, 08(04): 371-377.

肌减少症在重症患者中非常普遍,并与ICU患者的不良结局相关。目前,采用人体测量法和血清蛋白等来确定骨骼肌肉质量是不可靠的。一些新技术,包括双能X线吸收仪、CT、超声波和生物阻抗分析,已被研究和验证用于ICU肌减少症的诊断和预后。然而,大多数重症患者往往无法获得这些技术。最近,尿素/肌酐和肌酐/胱抑素C构成了诊断肌减少症、预测ICU结果和评估危重患者营养状况的准确方法。本文对ICU患者骨骼肌质量评估进行综述,重点介绍适合在ICU患者中应用的相关影像学技术和血清学生物标志物的优点和局限性的相关证据。

Sarcopenia is common in critically ill patients and is associated with poor ICU outcomes. Anthropometric measurements and serum albumin are currently unreliable for determining muscle mass. Several new techniques for the diagnosis and prognosis of sarcopenia in the ICU, including dual-energy X-ray absorptiometry, computed tomography scanning, ultrasonography, and bioimpedance analysis, have been studied and validated. However, most critically ill patients do not have access to these techniques. Urea/creatinine and creatinine/cystatin C have recently been identified as an accurate method for diagnosing sarcopenia, predicting ICU outcomes, and assessing nutritional status in critically ill patients. This review of skeletal muscle quality assessment in ICU patients focuses on relevant evidence on the advantages and limitations of relevant imaging techniques and serological biomarkers suitable for application in ICU patients.

1
Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Sarcopenia: revised European consensus on definition and diagnosis [J]. Age Ageing, 2019, 48(4): 601.
2
Kizilarslanoglu MC, Kuyumcu ME, Yesil Y, et al. Sarcopenia in critically ill patients [J]. J Anesth, 2016, 30(5): 884-890.
3
Puthucheary ZA, Rawal J, McPhail M, et al. Acute skeletal muscle wasting in critical illness [J]. JAMA, 2013, 310(15): 1591-1600.
4
Vatic M, von Haehling S, Ebner N. Inflammatory biomarkers of frailty [J]. Exp Gerontol, 2020, 133: 110858.
5
Kalinkovich A, Livshits G. Sarcopenia--the search for emerging biomarkers [J]. Ageing Res Rev, 2015, 22: 58-71.
6
Ligthart-Melis GC, Luiking YC, Kakourou A, et al. Frailty, sarcopenia, and malnutrition frequently (co-)occur in hospitalized older adults: a systematic review and meta-analysis [J]. J Am Med Dir Assoc, 2020, 21(9): 1216-1228.
7
Doig GS, Simpson F, Sweetman EA, et al. Early parenteral nutrition in critically ill patients with short-term relative contraindications to early enteral nutrition: a randomized controlled trial [J]. JAMA, 2013, 309(20): 2130-2138.
8
Kho ME, Truong AD, Zanni JM, et al. Neuromuscular electrical stimulation in mechanically ventilated patients: a randomized, sham-controlled pilot trial with blinded outcome assessment [J]. J Crit Care, 2015, 30(1): 32-39.
9
Nguyen NQ. Pharmacological therapy of feed intolerance in the critically ills [J]. World J Gastrointest Pharmacol Ther, 2014, 5(3): 148-155.
10
Moisey LL, Mourtzakis M, Cotton BA, et al. Skeletal muscle predicts ventilator-free days, ICU-free days, and mortality in elderly ICU patients [J]. Crit Care, 2013, 17(5): R206.
11
Pichard C, Kyle UG, Morabia A, et al. Nutritional assessment: lean body mass depletion at hospital admission is associated with an increased length of stay [J]. Am J Clin Nutr, 2004, 79(4): 613-618.
12
Mourtzakis M, Prado CM, Lieffers JR, et al. A practical and precise approach to quantification of body composition in cancer patients using computed tomography images acquired during routine care [J]. Appl Physiol Nutr Metab, 2008, 33(5): 997-1006.
13
Shen W, Punyanitya M, Wang Z, et al. Total body skeletal muscle and adipose tissue volumes: estimation from a single abdominal cross-sectional image [J]. J Appl Physiol, 2004, 97(6): 2333-2338.
14
Paris M, Mourtzakis M. Assessment of skeletal muscle mass in critically ill patients: considerations for the utility of computed tomography imaging and ultrasonography [J]. Curr Opin Clin Nutr Metab Care, 2016, 19(2): 125-130.
15
Kubiak CA, Ranganathan K, Matusko N, et al. Computed tomography evidence of psoas muscle atrophy without concomitant tendon wasting in early sepsis [J]. J Surg Res, 2019, 234: 210-216.
16
Zhang XM, Chen D, Xie XH, et al. Sarcopenia as a predictor of mortality among the critically ill in an intensive care unit: a systematic review and meta-analysis [J]. BMC Geriatr, 2021, 21(1): 339.
17
Looijaard W, Dekker IM, Beishuizen A, et al. Early high protein intake and mortality in critically ill ICU patients with low skeletal muscle area and -density [J]. Clin Nutr, 2020, 39(7): 2192-2201.
18
Yeh DD, Ortiz-Reyes LA, Quraishi SA, et al. Early nutritional inadequacy is associated with psoas muscle deterioration and worse clinical outcomes in critically ill surgical patients [J]. J Crit Care, 2018, 45: 7-13.
19
Weijs PJ, Looijaard WG, Dekker IM, et al. Low skeletal muscle area is a risk factor for mortality in mechanically ventilated critically ill patients [J]. Crit Care, 2014, 18(2): R12.
20
Jaitovich A, Khan M, Itty R, et al. ICU admission muscle and fat mass, survival, and disability at discharge: a prospective cohort study [J]. Chest, 2019, 155(2): 322-330.
21
Scott JM, Martin DS, Ploutz-Snyder R, et al. Panoramic ultrasound: a novel and valid tool for monitoring change in muscle mass [J]. J Cachexia Sarcopenia Muscle, 2017, 8(3): 475-481.
22
Connolly B, MacBean V, Crowley C, et al. Ultrasound for the assessment of peripheral skeletal muscle architecture in critical illness: a systematic review [J]. Crit Care Med, 2015, 43(4): 897-905.
23
Galindo Martín CA, Monares Zepeda E, Lescas Méndez OA. Bedside ultrasound measurement of rectus femoris: a tutorial for the nutrition support clinician [J]. J Nutr Metab, 2017, 2017: 2767232.
24
Hadda V, Kumar R, Hussain T, et al. Reliability of ultrasonographic arm muscle thickness measurement by various levels of health care providers in ICU [J]. Clin Nutr ESPEN, 2018, 24: 78-81.
25
Grimm A, Teschner U, Porzelius C, et al. Muscle ultrasound for early assessment of critical illness neuromyopathy in severe sepsis [J]. Crit Care, 2013, 17(5): R227.
26
Ferrie S, Allman-Farinelli M, Daley M, et al. A Randomized Controlled Trial Using Parenteral Nutrition [J]. JPEN J Parenter Enteral Nutr, 2016, 40(6): 795-805.
27
Fetterplace K, Deane AM, Tierney A, et al. Targeted full energy and protein delivery in critically ill patients: a pilot randomized controlled trial (FEED trial) [J]. JPEN J Parenter Enteral Nutr, 2018, 42(8): 1252-1262.
28
Kyle UG, Bosaeus I, De Lorenzo AD, et al. Bioelectrical impedance analysis--part Ⅰ: review of principles and methods [J]. Clin Nutr, 2004, 23(5): 1226-1243.
29
Lukaski HC, Bolonchuk WW, Hall CB, et al. Validation of tetrapolar bioelectrical impedance method to assess human body composition [J]. J Appl Physiol, 1986, 60(4): 1327-1332.
30
O'Brien C, Young AJ, Sawka MN. Bioelectrical impedance to estimate changes in hydration status [J]. Int J Sports Med, 2002, 23(5): 361-366.
31
Barak N, Wall-Alonso E, Cheng A, et al. Use of bioelectrical impedance analysis to predict energy expenditure of hospitalized patients receiving nutrition support [J]. JPEN J Parenter Enteral Nutr, 2003, 27(1): 43-46.
32
Berneis K, Keller U. Bioelectrical impedance analysis during acute changes of extracellular osmolality in man [J]. Clin Nutr, 2000, 19(5): 361-366.
33
Stobäus N, Pirlich M, Valentini L, et al. Determinants of bioelectrical phase angle in disease [J]. Br J Nutr, 2012, 107(8): 1217-1220.
34
Selberg O, Selberg D. Norms and correlates of bioimpedance phase angle in healthy human subjects, hospitalized patients, and patients with liver cirrhosis [J]. Eur J Appl Physiol, 2002, 86(6): 509-516.
35
Gupta D, Lis CG, Dahlk SL, et al. Bioelectrical impedance phase angle as a prognostic indicator in advanced pancreatic cancer [J]. Br J Nutr, 2004, 92(6): 957-962.
36
Berbigier MC, Pasinato VF, Rubin Bde A, et al. Bioelectrical impedance phase angle in septic patients admitted to intensive care units [J]. Rev Bras Ter Intensiva, 2013, 25(1): 25-31.
37
Lee Y, Kwon O, Shin CS, et al. Use of bioelectrical impedance analysis for the assessment of nutritional status in critically ill patients [J]. Clin Nutr Res, 2015, 4(1): 32-40.
38
Razzera EL, Marcadenti A, Rovedder SW, et al. Parameters of bioelectrical impedance are good predictors of nutrition risk, length of stay, and mortality in critically ill patients: a prospective cohort study [J]. JPEN J Parenter Enteral Nutr, 2020, 44(5): 849-854.
39
Guglielmi G, Ponti F, Agostini M, et al. The role of DXA in sarcopenia [J]. Aging Clin Exp Res, 2016, 28: 1047-1060.
40
Abdalla PP, Silva AM, Venturini AC, et al. Cut-off points of appendicular lean soft tissue for identifying sarcopenia in older adults in Brazil: a cross-sectional study [J]. Nutr Hosp, 2020, 37: 306-312.
41
Kashani K, Rosner MH, Ostermann M. Creatinine: from physiology to clinical application [J]. Eur J Intern Med, 2020, 72: 9-14.
42
Björk J, Nyman U, Berg U, et al. Validation of standardized creatinine and cystatin C GFR estimating equations in a large multicentre European cohort of children [J]. Pediatr Nephrol, 2019, 34(6): 1087-1098.
43
Kashani KB, Frazee EN, Kukrálová L, et al. Development of the Sarcopenia Index [J]. Crit Care Med, 2017, 45(1): e23-e29.
44
Kashani K, Sarvottam K, Pereira NL, et al. The sarcopenia index: a novel measure of muscle mass in lung transplant candidates [J]. Clin Transplant, 2018, 32(3): e13182.
45
Barreto EF, Kanderi T, DiCecco SR, et al. Sarcopenia index is a simple objective screening tool for malnutrition in the critically ill [J]. JPEN J Parenter Enteral Nutr, 2019, 43(6): 780-788.
46
Abe K, Yano T, Katano S, et al. Utility of the sarcopenia index for assessment of muscle mass and nutritional status in patients with chronic heart failure: comparison with anthropometric parameters [J]. Geriatr Gerontol Int, 2020, 20(4): 388-389.
47
Amado CA, García-Unzueta MT, Lavin BA, et al. The ratio serum creatinine/serum cystatin c (a surrogate marker of muscle mass) as a predictor of hospitalization in chronic obstructive pulmonary disease outpatients [J]. Respiration, 2019, 97(4): 302-309.
48
Xu Y, Ding Y, Li X, et al. Cystatin C is a disease-associated protein subject to multiple regulation [J]. Immunol Cell Biol, 2015, 93(5): 442-451.
49
Haines RW, Zolfaghari P, Wan Y, et al. Elevated urea-to-creatinine ratio provides a biochemical signature of muscle catabolism and persistent critical illness after major trauma [J]. Intens Care Med, 2019, 45(12): 1718-1731.
50
Zhang Z, Ho KM, Gu H, et al. Defining persistent critical illness based on growth trajectories in patients with sepsis [J]. Crit Care, 2020, 24(1): 57.
51
Davuluri G, Allawy A, Thapaliya S, et al. Hyperammonaemia-induced skeletal muscle mitochondrial dysfunction results in cataplerosis and oxidative stress [J] J Physiol, 2016, 594(24): 7341-7360.
52
McDaniel J, Davuluri G, Hill EA, et al. Hyperammonemia results in reduced muscle function independent of muscle mass [J]. Am J Physiol Gastrointest Liver Physiol, 2016, 310(3): G163-170.
53
Rugg C, Ströhle M, Treml B, et al. ICU-acquired hypernatremia is associated with persistent inflammation, immunosuppression and catabolism syndrome [J]. J Clin Med, 2020, 9(9): 3017.
54
Haines RW, Fowler AJ, Wan YI, et al. Catabolism in critical illness: a reanalysis of the reducing deaths due to oxidative stress (REDOXS) trial [J]. Crit Care Med, 2022, 50(7): 1072-1082.
55
Volbeda M, Hessels L, Posma RA, et al. Time courses of urinary creatinine excretion, measured creatinine clearance and estimated glomerular filtration rate over 30 days of ICU admission [J]. J Crit Care, 2021, 63: 161-166.
56
Duan K, Gong M, Gao X, et al. Change in urea to creatinine ratio is associated with postoperative complications and skeletal muscle wasting in pancreatic cancer patients following pancreatoduodenectomy [J]. Asia Pac J Clin Nutr, 2021, 30(3): 374-382.
57
Iwashyna TJ, Hodgson CL, Pilcher D, et al. Timing of onset and burden of persistent critical illness in Australia and New Zealand: a retrospective, population-based, observational study [J].Lancet Respir Med, 2016, 4(7): 566-573.
[1] 吕衡, 董理聪, 谢海琴, 赵卓非, 刘俐, 孙德胜. 基于CT-超声对照的肝脏局灶性病变超声漏诊状况分析:一项单中心横断面质量控制调查报告[J]. 中华医学超声杂志(电子版), 2023, 20(07): 712-716.
[2] 包艳娟, 杨小红, 杨星海, 赵胜, 杨帆, 潘圣宝, 张晓燕. 超声、磁共振与CT联合诊断腹膜后内寄生胎[J]. 中华医学超声杂志(电子版), 2023, 20(03): 265-271.
[3] 董晓燕, 赵琪, 唐军, 张莉, 杨晓燕, 李姣. 奥密克戎变异株感染所致新型冠状病毒感染疾病新生儿的临床特征分析[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 595-603.
[4] 张泽华, 杨诗怡, 熊茂明, 张嘉炜. 腹盆腔脂肪与肌肉含量与Miles术后发生造口旁疝风险的相关性研究[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(01): 9-14.
[5] 李海明, 刘鸿飞, 李俊. 血清脂蛋白酶水平与COPD患者骨骼肌质量减少的关系[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 500-503.
[6] 刘思佚, 拉周措毛. 肺尘埃沉着的影像学及支气管镜表现分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 412-414.
[7] 叶垚坤, 姜家锁, 叶靖, 张丽莎, 蒋巧会, 丁贵苏, 闵凌峰. 基于CT的影像组学评估自发性气胸患者的预后[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 185-189.
[8] 李雅丽, 薛敏君, 韩福. 38例肺隐球菌患者CT及临床特征分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 236-238.
[9] 方德根, 任彦红, 李春雷. 3D-VATS联合3D-CTBA单操作孔行解剖性肺段切除治疗早期NSCLC的临床分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(01): 89-91.
[10] 汪涛, 朱浩雨, 卜青松, 胡磊, 王文娟, 方阮, 刘啸峰. 非小细胞肺癌EGFR突变状态与CT特征的相关性[J]. 中华肺部疾病杂志(电子版), 2023, 16(01): 51-54.
[11] 梁辰, 王颖奕, 熊廷伟. 原发性胸腺癌的临床表现及MSCT诊断意义[J]. 中华肺部疾病杂志(电子版), 2022, 15(04): 486-489.
[12] 王笑, 王伟中. 急性硬膜外血肿自发快速消散一例及文献复习[J]. 中华神经创伤外科电子杂志, 2022, 08(06): 376-378.
[13] 邱春华, 张志宏. 1108例小肠疾病的临床诊断及检查策略分析[J]. 中华临床医师杂志(电子版), 2023, 17(9): 948-954.
[14] 王海军, 宋一凡, 余家阔. CT横断面测量指标对髌骨脱位的诊断价值[J]. 中华临床医师杂志(电子版), 2022, 16(08): 744-748.
[15] 王可珺, 李吉镇, 马标, 续慧超, 谌红珊, 刘雷. 肌酐/胱抑素C对晚期上皮性卵巢癌术后并发症的预测价值[J]. 中华诊断学电子杂志, 2023, 11(01): 49-55.
阅读次数
全文


摘要