1 |
Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Sarcopenia: revised European consensus on definition and diagnosis [J]. Age Ageing, 2019, 48(4): 601.
|
2 |
Kizilarslanoglu MC, Kuyumcu ME, Yesil Y, et al. Sarcopenia in critically ill patients [J]. J Anesth, 2016, 30(5): 884-890.
|
3 |
Puthucheary ZA, Rawal J, McPhail M, et al. Acute skeletal muscle wasting in critical illness [J]. JAMA, 2013, 310(15): 1591-1600.
|
4 |
Vatic M, von Haehling S, Ebner N. Inflammatory biomarkers of frailty [J]. Exp Gerontol, 2020, 133: 110858.
|
5 |
Kalinkovich A, Livshits G. Sarcopenia--the search for emerging biomarkers [J]. Ageing Res Rev, 2015, 22: 58-71.
|
6 |
Ligthart-Melis GC, Luiking YC, Kakourou A, et al. Frailty, sarcopenia, and malnutrition frequently (co-)occur in hospitalized older adults: a systematic review and meta-analysis [J]. J Am Med Dir Assoc, 2020, 21(9): 1216-1228.
|
7 |
Doig GS, Simpson F, Sweetman EA, et al. Early parenteral nutrition in critically ill patients with short-term relative contraindications to early enteral nutrition: a randomized controlled trial [J]. JAMA, 2013, 309(20): 2130-2138.
|
8 |
Kho ME, Truong AD, Zanni JM, et al. Neuromuscular electrical stimulation in mechanically ventilated patients: a randomized, sham-controlled pilot trial with blinded outcome assessment [J]. J Crit Care, 2015, 30(1): 32-39.
|
9 |
Nguyen NQ. Pharmacological therapy of feed intolerance in the critically ills [J]. World J Gastrointest Pharmacol Ther, 2014, 5(3): 148-155.
|
10 |
Moisey LL, Mourtzakis M, Cotton BA, et al. Skeletal muscle predicts ventilator-free days, ICU-free days, and mortality in elderly ICU patients [J]. Crit Care, 2013, 17(5): R206.
|
11 |
Pichard C, Kyle UG, Morabia A, et al. Nutritional assessment: lean body mass depletion at hospital admission is associated with an increased length of stay [J]. Am J Clin Nutr, 2004, 79(4): 613-618.
|
12 |
Mourtzakis M, Prado CM, Lieffers JR, et al. A practical and precise approach to quantification of body composition in cancer patients using computed tomography images acquired during routine care [J]. Appl Physiol Nutr Metab, 2008, 33(5): 997-1006.
|
13 |
Shen W, Punyanitya M, Wang Z, et al. Total body skeletal muscle and adipose tissue volumes: estimation from a single abdominal cross-sectional image [J]. J Appl Physiol, 2004, 97(6): 2333-2338.
|
14 |
Paris M, Mourtzakis M. Assessment of skeletal muscle mass in critically ill patients: considerations for the utility of computed tomography imaging and ultrasonography [J]. Curr Opin Clin Nutr Metab Care, 2016, 19(2): 125-130.
|
15 |
Kubiak CA, Ranganathan K, Matusko N, et al. Computed tomography evidence of psoas muscle atrophy without concomitant tendon wasting in early sepsis [J]. J Surg Res, 2019, 234: 210-216.
|
16 |
Zhang XM, Chen D, Xie XH, et al. Sarcopenia as a predictor of mortality among the critically ill in an intensive care unit: a systematic review and meta-analysis [J]. BMC Geriatr, 2021, 21(1): 339.
|
17 |
Looijaard W, Dekker IM, Beishuizen A, et al. Early high protein intake and mortality in critically ill ICU patients with low skeletal muscle area and -density [J]. Clin Nutr, 2020, 39(7): 2192-2201.
|
18 |
Yeh DD, Ortiz-Reyes LA, Quraishi SA, et al. Early nutritional inadequacy is associated with psoas muscle deterioration and worse clinical outcomes in critically ill surgical patients [J]. J Crit Care, 2018, 45: 7-13.
|
19 |
Weijs PJ, Looijaard WG, Dekker IM, et al. Low skeletal muscle area is a risk factor for mortality in mechanically ventilated critically ill patients [J]. Crit Care, 2014, 18(2): R12.
|
20 |
Jaitovich A, Khan M, Itty R, et al. ICU admission muscle and fat mass, survival, and disability at discharge: a prospective cohort study [J]. Chest, 2019, 155(2): 322-330.
|
21 |
Scott JM, Martin DS, Ploutz-Snyder R, et al. Panoramic ultrasound: a novel and valid tool for monitoring change in muscle mass [J]. J Cachexia Sarcopenia Muscle, 2017, 8(3): 475-481.
|
22 |
Connolly B, MacBean V, Crowley C, et al. Ultrasound for the assessment of peripheral skeletal muscle architecture in critical illness: a systematic review [J]. Crit Care Med, 2015, 43(4): 897-905.
|
23 |
Galindo Martín CA, Monares Zepeda E, Lescas Méndez OA. Bedside ultrasound measurement of rectus femoris: a tutorial for the nutrition support clinician [J]. J Nutr Metab, 2017, 2017: 2767232.
|
24 |
Hadda V, Kumar R, Hussain T, et al. Reliability of ultrasonographic arm muscle thickness measurement by various levels of health care providers in ICU [J]. Clin Nutr ESPEN, 2018, 24: 78-81.
|
25 |
Grimm A, Teschner U, Porzelius C, et al. Muscle ultrasound for early assessment of critical illness neuromyopathy in severe sepsis [J]. Crit Care, 2013, 17(5): R227.
|
26 |
Ferrie S, Allman-Farinelli M, Daley M, et al. A Randomized Controlled Trial Using Parenteral Nutrition [J]. JPEN J Parenter Enteral Nutr, 2016, 40(6): 795-805.
|
27 |
Fetterplace K, Deane AM, Tierney A, et al. Targeted full energy and protein delivery in critically ill patients: a pilot randomized controlled trial (FEED trial) [J]. JPEN J Parenter Enteral Nutr, 2018, 42(8): 1252-1262.
|
28 |
Kyle UG, Bosaeus I, De Lorenzo AD, et al. Bioelectrical impedance analysis--part Ⅰ: review of principles and methods [J]. Clin Nutr, 2004, 23(5): 1226-1243.
|
29 |
Lukaski HC, Bolonchuk WW, Hall CB, et al. Validation of tetrapolar bioelectrical impedance method to assess human body composition [J]. J Appl Physiol, 1986, 60(4): 1327-1332.
|
30 |
O'Brien C, Young AJ, Sawka MN. Bioelectrical impedance to estimate changes in hydration status [J]. Int J Sports Med, 2002, 23(5): 361-366.
|
31 |
Barak N, Wall-Alonso E, Cheng A, et al. Use of bioelectrical impedance analysis to predict energy expenditure of hospitalized patients receiving nutrition support [J]. JPEN J Parenter Enteral Nutr, 2003, 27(1): 43-46.
|
32 |
Berneis K, Keller U. Bioelectrical impedance analysis during acute changes of extracellular osmolality in man [J]. Clin Nutr, 2000, 19(5): 361-366.
|
33 |
Stobäus N, Pirlich M, Valentini L, et al. Determinants of bioelectrical phase angle in disease [J]. Br J Nutr, 2012, 107(8): 1217-1220.
|
34 |
Selberg O, Selberg D. Norms and correlates of bioimpedance phase angle in healthy human subjects, hospitalized patients, and patients with liver cirrhosis [J]. Eur J Appl Physiol, 2002, 86(6): 509-516.
|
35 |
Gupta D, Lis CG, Dahlk SL, et al. Bioelectrical impedance phase angle as a prognostic indicator in advanced pancreatic cancer [J]. Br J Nutr, 2004, 92(6): 957-962.
|
36 |
Berbigier MC, Pasinato VF, Rubin Bde A, et al. Bioelectrical impedance phase angle in septic patients admitted to intensive care units [J]. Rev Bras Ter Intensiva, 2013, 25(1): 25-31.
|
37 |
Lee Y, Kwon O, Shin CS, et al. Use of bioelectrical impedance analysis for the assessment of nutritional status in critically ill patients [J]. Clin Nutr Res, 2015, 4(1): 32-40.
|
38 |
Razzera EL, Marcadenti A, Rovedder SW, et al. Parameters of bioelectrical impedance are good predictors of nutrition risk, length of stay, and mortality in critically ill patients: a prospective cohort study [J]. JPEN J Parenter Enteral Nutr, 2020, 44(5): 849-854.
|
39 |
Guglielmi G, Ponti F, Agostini M, et al. The role of DXA in sarcopenia [J]. Aging Clin Exp Res, 2016, 28: 1047-1060.
|
40 |
Abdalla PP, Silva AM, Venturini AC, et al. Cut-off points of appendicular lean soft tissue for identifying sarcopenia in older adults in Brazil: a cross-sectional study [J]. Nutr Hosp, 2020, 37: 306-312.
|
41 |
Kashani K, Rosner MH, Ostermann M. Creatinine: from physiology to clinical application [J]. Eur J Intern Med, 2020, 72: 9-14.
|
42 |
Björk J, Nyman U, Berg U, et al. Validation of standardized creatinine and cystatin C GFR estimating equations in a large multicentre European cohort of children [J]. Pediatr Nephrol, 2019, 34(6): 1087-1098.
|
43 |
Kashani KB, Frazee EN, Kukrálová L, et al. Development of the Sarcopenia Index [J]. Crit Care Med, 2017, 45(1): e23-e29.
|
44 |
Kashani K, Sarvottam K, Pereira NL, et al. The sarcopenia index: a novel measure of muscle mass in lung transplant candidates [J]. Clin Transplant, 2018, 32(3): e13182.
|
45 |
Barreto EF, Kanderi T, DiCecco SR, et al. Sarcopenia index is a simple objective screening tool for malnutrition in the critically ill [J]. JPEN J Parenter Enteral Nutr, 2019, 43(6): 780-788.
|
46 |
Abe K, Yano T, Katano S, et al. Utility of the sarcopenia index for assessment of muscle mass and nutritional status in patients with chronic heart failure: comparison with anthropometric parameters [J]. Geriatr Gerontol Int, 2020, 20(4): 388-389.
|
47 |
Amado CA, García-Unzueta MT, Lavin BA, et al. The ratio serum creatinine/serum cystatin c (a surrogate marker of muscle mass) as a predictor of hospitalization in chronic obstructive pulmonary disease outpatients [J]. Respiration, 2019, 97(4): 302-309.
|
48 |
Xu Y, Ding Y, Li X, et al. Cystatin C is a disease-associated protein subject to multiple regulation [J]. Immunol Cell Biol, 2015, 93(5): 442-451.
|
49 |
Haines RW, Zolfaghari P, Wan Y, et al. Elevated urea-to-creatinine ratio provides a biochemical signature of muscle catabolism and persistent critical illness after major trauma [J]. Intens Care Med, 2019, 45(12): 1718-1731.
|
50 |
Zhang Z, Ho KM, Gu H, et al. Defining persistent critical illness based on growth trajectories in patients with sepsis [J]. Crit Care, 2020, 24(1): 57.
|
51 |
Davuluri G, Allawy A, Thapaliya S, et al. Hyperammonaemia-induced skeletal muscle mitochondrial dysfunction results in cataplerosis and oxidative stress [J] J Physiol, 2016, 594(24): 7341-7360.
|
52 |
McDaniel J, Davuluri G, Hill EA, et al. Hyperammonemia results in reduced muscle function independent of muscle mass [J]. Am J Physiol Gastrointest Liver Physiol, 2016, 310(3): G163-170.
|
53 |
Rugg C, Ströhle M, Treml B, et al. ICU-acquired hypernatremia is associated with persistent inflammation, immunosuppression and catabolism syndrome [J]. J Clin Med, 2020, 9(9): 3017.
|
54 |
Haines RW, Fowler AJ, Wan YI, et al. Catabolism in critical illness: a reanalysis of the reducing deaths due to oxidative stress (REDOXS) trial [J]. Crit Care Med, 2022, 50(7): 1072-1082.
|
55 |
Volbeda M, Hessels L, Posma RA, et al. Time courses of urinary creatinine excretion, measured creatinine clearance and estimated glomerular filtration rate over 30 days of ICU admission [J]. J Crit Care, 2021, 63: 161-166.
|
56 |
Duan K, Gong M, Gao X, et al. Change in urea to creatinine ratio is associated with postoperative complications and skeletal muscle wasting in pancreatic cancer patients following pancreatoduodenectomy [J]. Asia Pac J Clin Nutr, 2021, 30(3): 374-382.
|
57 |
Iwashyna TJ, Hodgson CL, Pilcher D, et al. Timing of onset and burden of persistent critical illness in Australia and New Zealand: a retrospective, population-based, observational study [J].Lancet Respir Med, 2016, 4(7): 566-573.
|