切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2022, Vol. 08 ›› Issue (04) : 378 -383. doi: 10.3877/cma.j.issn.2096-1537.2022.04.017

综述

ARDS患者V-V ECMO支持期间机械通气设置的研究
尹承芬1, 徐磊2,()   
  1. 1. 300170 天津,天津医科大学三中心临床学院
    2. 300170 天津,天津市第三中心医院 天津市重症疾病体外生命支持重点实验室 天津市人工细胞工程技术研究中心 天津市肝胆研究所
  • 收稿日期:2022-01-14 出版日期:2022-11-28
  • 通信作者: 徐磊
  • 基金资助:
    天津市科技计划项目(18ZXDBSY00100); 睿E(睿意)急诊医学研究专项基金项目(R2019006)

Settings of mechanical ventilation during V-V ECMO support in ARDS patients

Chengfen Yin1, Lei Xu2,()   

  1. 1. Tianjin Medical University Third Center Clinical College, Tianjin 300170, China
    2. Tianjin Third Central Hospital, Tianjin Key Laboratory of In Vitro Life Support for Critical Diseases, Tianjin Artificial Cell Engineering Technology Research Center, Tianjin Hepatobiliary Research Institute, Tianjin 300170, China
  • Received:2022-01-14 Published:2022-11-28
  • Corresponding author: Lei Xu
引用本文:

尹承芬, 徐磊. ARDS患者V-V ECMO支持期间机械通气设置的研究[J]. 中华重症医学电子杂志, 2022, 08(04): 378-383.

Chengfen Yin, Lei Xu. Settings of mechanical ventilation during V-V ECMO support in ARDS patients[J]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2022, 08(04): 378-383.

保护性机械通气明显提高了急性呼吸窘迫综合征(ARDS)患者的生存率,但重度ARDS患者病死率仍较高,常需采用静脉-静脉体外膜肺氧合(V-V ECMO)进行呼吸支持。目前V-V ECMO期间的机械通气设置仍不明确,基于现有V-V ECMO支持期间机械通气的研究,被认可的是肺休息策略或超保护性机械通气策略:限制潮气量(Vt)≤4 ml/kg预测体质量(PBW),限制平台压≤25 cmH2O(1 cmH2O=0.098 kPa)并使用较高呼气末正压(PEEP)(≥10 cmH2O),且在V-V ECMO支持期间进行密切的呼吸功能监测。本文描述ARDS患者在V-V ECMO支持期间的病理生理变化,并根据现有证据和文献报告,阐述机械通气策略、呼吸机参数设置以及呼吸功能监测方法。

The mortality rate of patients with severe ARDS is still high, even with the protective mechanical ventilation. Veno-venous extracorporeal membrane oxygenation (V-V ECMO) may be needed for better respiratory support. The settings of mechanical ventilation with ECMO are still unclear. Based on the existing studies, lung rest strategy or ultra-protective mechanical ventilation strategy are widely accepted: tidal volume (Vt) ≤4 ml/kg predicted body weight (PBW), plateau pressure ≤25 cmH2O (1 cmH2O=0.098 kPa) and positive end expiratory pressure (PEEP) ≥10 cmH2O. And respiratory function should be monitored closely during V-V ECMO support. This paper describes the pathophysiological changes in ARDS patients during V-V ECMO and describes the mechanical ventilation strategy, ventilator parameter settings, and respiratory function monitoring methods based on the available evidence and reports in the literature.

1
Brown SM, Wilson EL, Presson AP, et al; National Institutes of Health NHLBI ARDS Network. Understanding patient outcomes after acute respiratory distress syndrome: identifying subtypes of physical, cognitive and mental health outcomes [J]. Thorax, 2017, 72(12): 1094-1103.
2
Katira BH. Ventilator-induced lung injury: classic and novel concepts [J]. Respir Care, 2019, 64(6): 629-637.
3
Chiu LC, Chuang LP, Leu SW, et al. Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome: propensity score matching [J]. Membranes (Basel), 2021, 11(6): 393.
4
Ltaief Z, Schneider AG, Liaudet L. Pathophysiology and clinical implications of the veno-arterial PCO2 gap [J]. Crit Care, 2021, 25(1): 318.
5
Nichols D, Nielsen ND. Oxygen delivery and consumption: a macrocirculatory perspective [J]. Crit Care Clin, 2010, 26(2): 239-253, table of contents.
6
Tonna JE, Abrams D, Brodie D, et al. Management of adult patients supported with venovenous extracorporeal membrane oxygenation (VV ECMO): Guideline from the Extracorporeal Life Support Organization (ELSO) [J]. ASAIO J, 2021, 67(6): 601-610.
7
Blankman P, Hasan D, Bikker IG, et al. Lung stress and strain calculations in mechanically ventilated patients in the intensive care unit [J]. Acta Anaesthesiol Scand, 2016, 60(1): 69-78.
8
Güldner A, Kiss T, Bluth T, et al. Effects of ultraprotective ventilation, extracorporeal carbon dioxide removal, and spontaneous breathing on lung morphofunction and inflammation in experimental severe acute respiratory distress syndrome [J]. Anesthesiology, 2015, 122(3): 631-646.
9
Fanelli V, Ranieri MV, Mancebo J, et al. Feasibility and safety of low-flow extracorporeal carbon dioxide removal to facilitate ultra-protective ventilation in patients with moderate acute respiratory distress syndrome [J]. Crit Care, 2016, 20: 36.
10
Schmidt M, Stewart C, Bailey M, et al. Mechanical ventilation management during extracorporeal membrane oxygenation for acute respiratory distress syndrome: a retrospective international multicenter study [J]. Crit Care Med, 2015, 43(3): 654-664.
11
Pesenti A, Carlesso E, Langer T, et al. Ventilation during extracorporeal support: why and how [J]. Med Klin Intensivmed Notfmed, 2018, 113(Suppl 1): 26-30.
12
Abrams D, Schmidt M, Pham T, et al. Mechanical ventilation for acute respiratory distress syndrome during extracorporeal life support. Research and Practice [J]. Am J Respir Crit Care Med, 2020, 201(5): 514-525.
13
Gattinoni L, Tonetti T, Quintel M. How best to set the ventilator on extracorporeal membrane lung oxygenation [J]. Curr Opin Crit Care, 2017, 23(1): 66-72.
14
Marhong JD, Telesnicki T, Munshi L, et al. Mechanical ventilation during extracorporeal membrane oxygenation. An international survey [J]. Ann Am Thorac Soc, 2014, 11(6): 956-961.
15
Spinelli E, Mauri T, Beitler JR, et al. Respiratory drive in the acute respiratory distress syndrome: pathophysiology, monitoring, and therapeutic interventions [J]. Intensive Care Med, 2020, 46(4): 606-618.
16
Papazian L, Forel JM, Gacouin A, et al. Neuromuscular blockers in early acute respiratory distress syndrome [J]. N Engl J Med, 2010, 363(12): 1107-1116.
17
Langer T, Santini A, Bottino N, et al. "Awake" extracorporeal membrane oxygenation (ECMO): pathophysiology, technical considerations, and clinical pioneering [J]. Crit Care, 2016, 20(1): 150.
18
Yu X, Gu S, Li M, et al. Awake extracorporeal membrane oxygenation for acute respiratory distress syndrome: which clinical issues should be taken into consideration [J]. Front Med (Lausanne), 2021, 8: 682526.
19
Yeo HJ, Cho WH, Kim D. Awake extracorporeal membrane oxygenation in patients with severe postoperative acute respiratory distress syndrome [J]. J Thorac Dis, 2016, 8(1): 37-42.
20
Hering R, Bolten JC, Kreyer S, et al. Spontaneous breathing during airway pressure release ventilation in experimental lung injury: effects on hepatic blood flow [J]. Intensive Care Med, 2008, 34(3): 523-527.
21
Crotti S, Bottino N, Spinelli E. Spontaneous breathing during veno-venous extracorporeal membrane oxygenation [J]. J Thorac Dis, 2018, 10(Suppl 5): S661-S669.
22
Serpa Neto A, Schmidt M, Azevedo LC, et al. Associations between ventilator settings during extracorporeal membrane oxygenation for refractory hypoxemia and outcome in patients with acute respiratory distress syndrome: a pooled individual patient data analysis [J]. Intensive Care Med, 2016, 42(11): 1672-1684.
23
Combes A, Hajage D, Capellier G, et al. Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome [J]. N Engl J Med, 2018, 378(21): 1965-1975.
24
Pham T, Combes A, Rozé H, et al. Extracorporeal membrane oxygenation for pandemic influenza A (H1N1)-induced acute respiratory distress syndrome: a cohort study and propensity-matched analysis [J]. Am J Respir Crit Care Med, 2013, 187(3): 276-285.
25
Del Sorbo L, Goffi A, Tomlinson G, et al. Effect of driving pressure change during extracorporeal membrane oxygenation in adults with acute respiratory distress syndrome: a randomized crossover physiologic study [J]. Crit Care Med, 2020, 48(12): 1771-1778.
26
Peek GJ, Mugford M, Tiruvoipati R, et al. Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): a multicentre randomised controlled trial [J]. Lancet, 2009, 374(9698): 1351-1363.
27
Holzgraefe B, Broomé M, Kalzén H, et al. Extracorporeal membrane oxygenation for pandemic H1N1 2009 respiratory failure [J]. Minerva Anestesiol, 2010, 76(12): 1043-1051.
28
Munshi L, Del Sorbo L, Adhikari NKJ, et al. Prone position for acute respiratory distress syndrome. A systematic review and meta-analysis [J]. Ann Am Thorac Soc, 2017, 14(Supplement 4): S280-S288.
29
Fan E, Brodie D, Slutsky AS. Acute respiratory distress syndrome: advances in diagnosis and treatment [J]. JAMA, 2018, 319(7): 698-710.
30
Guérin C, Reignier J, Richard JC, et al. Prone positioning in severe acute respiratory distress syndrome [J]. N Engl J Med, 2013, 368(23): 2159-2168.
31
Voelker MT, Jahn N, Bercker S, et al. Prone positioning of patients during venovenous extracorporeal membrane oxygenation is safe and feasible [J]. Anaesthesist, 2016, 65(4): 250-257.
32
Petit M, Fetita C, Gaudemer A, et al. Prone-positioning for severe acute respiratory distress syndrome requiring extracorporeal membrane oxygenation [J]. Crit Care Med, 2022, 50(2): 264-274.
33
Guervilly C, Hraiech S, Gariboldi V, et al. Prone positioning during veno-venous extracorporeal membrane oxygenation for severe acute respiratory distress syndrome in adults [J]. Minerva Anestesiol, 2014, 80(3): 307-313.
34
Hsu HJ, Chang HT, Zhao Z, et al. Positive end-expiratory pressure titration with electrical impedance tomography and pressure-volume curve: a randomized trial in moderate to severe ARDS [J]. Physiol Meas, 2021, 42(1): 014002.
35
Amato MB, Meade MO, Slutsky AS, et al. Driving pressure and survival in the acute respiratory distress syndrome [J]. N Engl J Med, 2015, 372(8): 747-755.
36
Gupta E, Awsare B, Hirose H, et al. Don't drive blind: driving pressure to optimize ventilator management in ECMO [J]. Lung, 2020, 198(5): 785-792.
37
Chiu LC, Lin SW, Chuang LP, et al. Mechanical power during extracorporeal membrane oxygenation and hospital mortality in patients with acute respiratory distress syndrome [J]. Crit Care, 2021, 25(1): 13.
38
Pelosi P, Ball L, Barbas CSV, Bellomo R, et al. Personalized mechanical ventilation in acute respiratory distress syndrome [J]. Crit Care, 2021, 25(1): 250.
39
Gattinoni L, Giosa L, Bonifazi M, et al. Targeting transpulmonary pressure to prevent ventilator-induced lung injury [J]. Expert Rev Respir Med, 2019, 13(8): 737-746.
40
Yoshida T, Amato MBP, Grieco DL, et al. Esophageal manometry and regional transpulmonary pressure in lung injury [J]. Am J Respir Crit Care Med, 2018, 197(8): 1018-1026.
41
Florio G, Ferrari M, Bittner EA, et al. A lung rescue team improves survival in obesity with acute respiratory distress syndrome [J]. Crit Care, 2020, 24(1): 4.
[1] 徐娟, 孙汝贤, 赵东亚, 张清艳, 金兆辰, 蔡燕. 右美托咪定序贯镇静模式对中深度镇静的机械通气患者预后和谵妄的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 363-369.
[2] 豆艺璇, 黄怀, 钱绮雯, 邢然然, 林丽, 白建芳. 低强度吸气肌训练对机械通气患者肺康复的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 370-375.
[3] 许振琦, 易伟, 范闻轩, 王金锋. 经鼻高流量氧疗与无创机械通气在严重创伤术后轻中度低氧血症患者中的临床应用[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 306-309.
[4] 佳麒, 罗楷, 杨磊, 李羽. 气管插管患儿围术期套囊压力管理研究现状杨[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(02): 132-138.
[5] 罗婷, 张实. 5种生物标志物对ARDS预后的预测分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 471-475.
[6] 李伟, 卓剑, 黄川, 黄有攀. Lac、HO-1、sRAGE、CRP/ALB表达及脓毒症并发ARDS危险因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 514-516.
[7] 钱晓英, 吴新, 徐婷婷. 颅脑损伤并发呼吸衰竭患者早期机械通气的效果分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 526-528.
[8] 代芬, 卞士柱. 无创机械通气联合肺康复在肺动脉高压呼吸衰竭治疗中的临床应用[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 560-562.
[9] 程传丽, 曾慧, 周静, 孙凌霞, 吴敏, 钱明江, 陈武, 万洁, 周仁佳. 超声引导下胸肺物理治疗对机械通气患者膈肌功能的疗效分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 563-565.
[10] 饶林静, 罗皓梨, 钟山. 不同时长PPV在体外循环心脏大血管术后并发ARDS中的临床应用[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 575-577.
[11] 徐欣轶, 薛蓓, 蒋莉, 陈慧. NRI联合CFS评分对肺癌术后机械通气的预测分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 358-360.
[12] 张松涛, 李世金, 凌霄, 吴文辉. 胸部物理治疗联合布地奈德雾化对多发伤患者并发ARDS的临床分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 373-375.
[13] 胡宗俊, 陈建国, 黄霞. ARDS机械通气继发肺栓塞危险因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 388-390.
[14] 谭林, 蒲运刚, 朱顺, 杨希. 急性呼吸窘迫综合征患者血清FGF21、ANGPTL4、HO-1表达及其临床意义[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 227-229.
[15] 陈蕊, 杨洪娜, 方巍, 李鑫鑫, 李甜甜, 于孝义, 王艳雪, 李文玉. 血清与支气管肺泡灌洗液中细胞因子水平与肺内外ARDS的相关性研究[J]. 中华重症医学电子杂志, 2023, 09(03): 251-258.
阅读次数
全文


摘要