切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2024, Vol. 10 ›› Issue (01) : 66 -71. doi: 10.3877/cma.j.issn.2096-1537.2024.01.011

综述

人工智能在急性呼吸窘迫综合征领域的应用进展
卢梦诗1, 刘威2, 马加威3, 嵇丹丹3, 贾璇1, 詹心萍1, 罗亮3,()   
  1. 1. 211166 南京,南京医科大学临床医学系
    2. 214122 江苏无锡,江南大学无锡医学院临床医学系
    3. 214002 江苏无锡,南京医科大学附属无锡市第二人民医院重症医学科
  • 收稿日期:2023-05-25 出版日期:2024-02-28
  • 通信作者: 罗亮

Application progress of artificial intelligence in acute respiratory distress syndrome management

Mengshi Lu1, Wei Liu2, Jiawei Ma3, Dandan Ji3, Xuan Jia1, Xinping Zhan1, Liang Luo3,()   

  1. 1. School of Medicine, Nanjing Medical University, Nanjing 211166, China
    2. School of Medicine, Wuxi Medical College of Jiangnan University, Wuxi 214122, China
    3. Department of Critical Care Medicine, Wuxi Second People's Hospital Affiliated to Nanjing Medical University, Wuxi 214002, China
  • Received:2023-05-25 Published:2024-02-28
  • Corresponding author: Liang Luo
引用本文:

卢梦诗, 刘威, 马加威, 嵇丹丹, 贾璇, 詹心萍, 罗亮. 人工智能在急性呼吸窘迫综合征领域的应用进展[J/OL]. 中华重症医学电子杂志, 2024, 10(01): 66-71.

Mengshi Lu, Wei Liu, Jiawei Ma, Dandan Ji, Xuan Jia, Xinping Zhan, Liang Luo. Application progress of artificial intelligence in acute respiratory distress syndrome management[J/OL]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2024, 10(01): 66-71.

近年来,人工智能(AI)正在越来越多地被应用到临床医学研究领域,AI与临床医学的交叉互融正在为临床医师带来更多的疾病认知,并成为推动临床医学各领域快速发展的重要工具。ICU内大量的数据来源是AI应用的理想对象,许多诊疗干预措施仍在有待开发与证实,AI技术在急性呼吸窘迫综合征(ARDS)领域的应用将是一个长期的探索过程。本文从重症监护背景下的AI技术、临床表型的识别、严重程度评估、影像学定量评估、床旁肺超声评估、呼吸力学监测与机械通气、候选药物筛选等7个方面对AI技术在ARDS领域的应用进展予以综述。

In recent years, artificial intelligence was increasingly applied in clinical medicine research. The integration of artificial intelligence with clinical medicine brings more recognition to clinicians, and being an important tool to promote rapid development in various medical fields. Huge amount of data and information in intensive care unit makes it ideal to apply artificial intelligence in ICU. AI aided diagnosis and interventions still need to be investigated and confirmed. The application of artificial intelligence in acute respiratory distress syndrome patients will be a way to go. This review explores the progress of artificial intelligence application in acute respiratory distress syndrome in 7 aspects: artificial intelligence application in intensive care, ARDS clinical phenotype identification, ARDS severity evaluation, quantitative imaging, quantitative bedside lung ultrasound evaluation, respiratory mechanics monitoring, mechanical ventilation strategy, candidate medication screening and so on.

1
罗亮, 宋勇. 急性呼吸窘迫综合征临床进展[M]. 北京: 人民卫生出版社, 2017.
2
Bernard GR, Artigas A, Brigham KL, et al. Report of the American-European consensus conference on ARDS: definitions, mechanisms, relevant outcomes and clinical trial coordination. The Consensus Committee [J]. Intensive Care Med, 1994, 20(3): 225-232.
3
Force ADT, Ranieri VM, Rubenfeld GD, et al. Acute respiratory distress syndrome: the Berlin Definition [J]. JAMA, 2012, 307(23): 2526-2533.
4
Henderson WR, Chen L, Amato MBP, et al. Fifty years of research in ARDS. Respiratory mechanics in acute respiratory distress syndrome [J]. Am J Respir Crit Care Med, 2017, 196(7): 822-833.
5
Reilly JP, Calfee CS, Christie JD. Acute respiratory distress syndrome phenotypes [J]. Semin Respir Crit Care Med, 2019, 40(1): 19-30.
6
Bhattarai S, Gupta A, Ali E, et al. Can big data and machine learning improve our understanding of acute respiratory distress syndrome? [J]. Cureus, 2021, 13(2): e13529.
7
Ashbaugh DG, Bigelow DB, Petty TL, et al. Acute respiratory distress in adults [J]. Lancet, 1967, 2(7511): 319-323.
8
Bernard GR, Artigas A, Brigham KL, et al. The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination [J]. Am J Respir Crit Care Med, 1994, 149(3 Pt 1): 818-824.
9
Villar J, Schultz MJ, Kacmarek RM. The LUNG SAFE: a biased presentation of the prevalence of ARDS! [J]. Crit Care, 2016, 20(1): 108.
10
Bellani G, Laffey JG, Pham T, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries [J]. JAMA, 2016, 315(8): 788-800.
11
Sayed M, Riaño D, Villar J. Novel criteria to classify ARDS severity using a machine learning approach [J]. Crit Care, 2021, 25(1): 150.
12
Tong A, Elliott JH, Azevedo LC, et al. Core outcomes set for trials in people with coronavirus disease 2019 [J]. Crit Care Med, 2020, 48(11): 1622-1635.
13
Maddali MV, Churpek M, Pham T, et al. Validation and utility of ARDS subphenotypes identified by machine-learning models using clinical data: an observational, multicohort, retrospective analysis [J]. Lancet Respir Med, 2022, 10(4): 367-377.
14
Sinha P, Delucchi KL, Chen Y, et al. Latent class analysis-derived subphenotypes are generalisable to observational cohorts of acute respiratory distress syndrome: a prospective study [J]. Thorax, 2022, 77(1): 13-21.
15
Calfee CS, Delucchi K, Parsons PE, et al. Subphenotypes in acute respiratory distress syndrome: latent class analysis of data from two randomised controlled trials [J]. Lancet Respir Med, 2014, 2(8): 611-620.
16
Famous KR, Delucchi K, Ware LB, et al. Acute respiratory distress syndrome subphenotypes respond differently to randomized fluid management strategy [J]. Am J Respir Crit Care Med, 2017, 195(3): 331-338.
17
Calfee CS, Delucchi KL, Sinha P, et al. Acute respiratory distress syndrome subphenotypes and differential response to simvastatin: secondary analysis of a randomised controlled trial [J]. Lancet Respir Med, 2018, 6(9): 691-698.
18
Zhang L, Wang DC, Huang Q, et al. Significance of clinical phenomes of patients with COVID-19 infection: a learning from 3795 patients in 80 reports [J]. Clin Transl Med, 2020, 10: 8.
19
Moss M, Ulysse CA, Angus DC, et al. Early neuromuscular blockade in the acute respiratory distress syndrome. Reply [J]. N Engl J Med, 2019, 381(8): 787-788.
20
Reamaroon N, Sjoding MW, Gryak J, et al. Automated detection of acute respiratory distress syndrome from chest X-rays using directionality measure and deep learning features [J]. Comput Biol Med, 2021, 134: 104463.
21
Herrmann P, Busana M, Cressoni M, et al. Using artificial intelligence for automatic segmentation of CT lung images in acute respiratory distress syndrome [J]. Front Physiol, 2021, 12: 676118.
22
Farzaneh N, Ansari S, Lee E, et al. Collaborative strategies for deploying artificial intelligence to complement physician diagnoses of acute respiratory distress syndrome [J]. NPJ Digit Med, 2023, 6(1): 62.
23
Kang M, Hong KS, Chikontwe P, et al. Quantitative assessment of chest CT patterns in COVID-19 and bacterial pneumonia patients: a deep learning perspective [J]. J Korean Med Sci, 2021, 36(5): e46.
24
Huang L, Han R, Ai T, et al. Serial quantitative chest CT assessment of COVID-19: a deep learning approach [J]. Radiol Cardiothorac Imaging, 2020, 2(2): e200075.
25
Lanza E, Muglia R, Bolengo I, et al. Quantitative chest CT analysis in COVID-19 to predict the need for oxygenation support and intubation [J]. Eur Radiol, 2020, 30(12): 6770-6778.
26
Wang Y, Chen Y, Wei Y, et al. Quantitative analysis of chest CT imaging findings with the risk of ARDS in COVID-19 patients: a preliminary study [J]. Ann Transl Med, 2020, 8(9): 594.
27
Kirby RR, Downs JB, Civetta JM, et al. High level positive end expiratory pressure (PEEP) in acute respiratory insufficiency [J]. Chest, 1975, 67(2): 156-163.
28
Gattinoni L, Meissner K, Marini JJ. The baby lung and the COVID-19 era [J]. Intensive Care Med, 2020, 46(7): 1438-1440.
29
Brusasco C, Santori G, Tavazzi G, et al. Second-order grey-scale texture analysis of pleural ultrasound images to differentiate acute respiratory distress syndrome and cardiogenic pulmonary edema [J]. J Clin Monit Comput, 2022, 36(1): 131-140.
30
Bataille B, Riu B, Ferre F, et al. Integrated use of bedside lung ultrasound and echocardiography in acute respiratory failure: a prospective observational study in ICU [J]. Chest, 2014, 146(6): 1586-1593.
31
Uckun S, Dawant BM, Lindstrom DP. Model-based diagnosis in intensive care monitoring: the YAQ approach [J]. Artif Intell Med, 1993, 5(1): 31-48.
32
Hagan R, Gillan CJ, Spence I, et al. Comparing regression and neural network techniques for personalized predictive analytics to promote lung protective ventilation in Intensive Care Units [J]. Comput Biol Med, 2020, 126: 104030.
33
Bottino DA, Giannella-Neto A, David CM, et al. Decision support system to assist mechanical ventilation in the adult respiratory distress syndrome [J]. Int J Clin Monit Comput, 1997, 14(2): 73-81.
34
Ganzert S, Kramer S, Guttmann J. Predicting the lung compliance of mechanically ventilated patients via statistical modeling [J]. Physiol Meas, 2012, 33(3): 345-359.
35
Perchiazzi G, Giuliani R, Ruggiero L, et al. Estimating respiratory system compliance during mechanical ventilation using artificial neural networks [J]. Anesth Analg, 2003, 97(4): 1143-1148.
36
Schultz MJ. Lung-protective mechanical ventilation with lower tidal volumes in patients not suffering from acute lung injury: a review of clinical studies [J]. Med Sci Monit, 2008, 14(2): RA22-26.
37
Ma J, Li Q, Ji D, et al. Predicting candidate therapeutic drugs for sepsis-induced acute respiratory distress syndrome based on transcriptome profiling [J]. Bioengineered, 2021, 12(1): 1369-1380.
38
Artigas L, Coma M, Matos-Filipe P, et al. In-silico drug repurposing study predicts the combination of pirfenidone and melatonin as a promising candidate therapy to reduce SARS-CoV-2 infection progression and respiratory distress caused by cytokine storm [J]. PLoS One, 2020, 15(10): e0240149.
39
Segú-Vergés C, Artigas L, Coma M, et al. Artificial intelligence assessment of the potential of tocilizumab along with corticosteroids therapy for the management of COVID-19 evoked acute respiratory distress syndrome [J]. PLoS One, 2023, 18(2): e0280677.
[1] 李洋, 蔡金玉, 党晓智, 常婉英, 巨艳, 高毅, 宋宏萍. 基于深度学习的乳腺超声应变弹性图像生成模型的应用研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 563-570.
[2] 杨敬武, 周美君, 陈雨凡, 李素淑, 何燕妮, 崔楠, 刘红梅. 人工智能超声结合品管圈活动对低年资超声医师甲状腺结节风险评估能力的作用[J/OL]. 中华医学超声杂志(电子版), 2024, 21(05): 522-526.
[3] 明昊, 肖迎聪, 巨艳, 宋宏萍. 乳腺癌风险预测模型的研究现状[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(05): 287-291.
[4] 江雅婷, 刘林峰, 沈辰曦, 陈奔, 刘婷, 龚裕强. 组织相关巨噬素3 保护肺血管内皮糖萼治疗急性呼吸窘迫综合征的机制研究[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(05): 353-362.
[5] 李振翮, 魏长青, 甄国栋, 李振富. 脓毒症并发急性呼吸窘迫综合征患者血清S1P、Wnt5a变化及其临床意义[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 293-300.
[6] 叶莉, 杜宇. 深度学习在牙髓根尖周病临床诊疗中的应用[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(06): 351-356.
[7] 熊鹰, 林敬莱, 白奇, 郭剑明, 王烁. 肾癌自动化病理诊断:AI离临床还有多远?[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 535-540.
[8] 李伟, 宋子健, 赖衍成, 周睿, 吴涵, 邓龙昕, 陈锐. 人工智能应用于前列腺癌患者预后预测的研究现状及展望[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 541-546.
[9] 黄俊龙, 李文双, 李晓阳, 刘柏隆, 陈逸龙, 丘惠平, 周祥福. 基于盆底彩超的人工智能模型在女性压力性尿失禁分度诊断中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 597-605.
[10] 莫淇舟, 苏劲, 黄健, 李健维, 李思宁, 柳建军. 智能控压输尿管软镜碎石吸引取石术在直径10~25 mm上尿路结石中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 497-502.
[11] 苏博兴, 肖博, 李建兴. 2024年美国泌尿外科学会年会结石领域手术治疗相关热点研究及解读[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 303-308.
[12] 莫林键, 杨舒博, 农卫赟, 程继文. 人工智能虚拟数字医师在钬激光前列腺剜除日间手术患教管理中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 318-322.
[13] 李义亮, 苏拉依曼·牙库甫, 麦麦提艾力·麦麦提明, 克力木·阿不都热依木. 机器人与腹腔镜食管裂孔疝修补术联合Nissen 胃底折叠术短期疗效分析[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(05): 512-517.
[14] 李智, 冯芸. NF-κB 与MAPK 信号通路及其潜在治疗靶点在急性呼吸窘迫综合征中的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 840-843.
[15] 孙铭远, 褚恒, 徐海滨, 张哲. 人工智能应用于多发性肺结节诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 785-790.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?