1 |
De Backer D, Foulon P. Minimizing catecholamines and optimizing perfusion [J]. Crit Care, 2019, 23(Suppl 1): 149.
|
2 |
Chang MC, Mondy JS, Meredith JW, et al. Redefining cardiovascular performance during resuscitation: ventricular stroke work, power, and the pressure-volume diagram [J]. J Trauma, 1998, 45(3): 470-478.
|
3 |
Guarracino F, Bertini P, Pinsky MR. Cardiovascular determinants of resuscitation from sepsis and septic shock [J]. Crit Care, 2019, 23(1): 118.
|
4 |
Kuang SJ, Xiao QJ, Kuang MX, et al. Measurements of cardiac efficiency and internal work of the left ventricle via reconstructed impedance cardiography [J]. Physiol Meas, 2021, 42(3).
|
5 |
Granegger M, Choi Y, Locher B, et al. Comparative analysis of cardiac mechano-energetics in isolated hearts supported by pulsatile or rotary blood pumps [J]. Sci Rep, 2019, 9(1): 20058.
|
6 |
Murphy L, Davidson S, Chase JG, et al. Patient-specific monitoring and trend analysis of model-based markers of fluid responsiveness in sepsis: a proof-of-concept animal study [J]. Ann Biomed Eng, 2020, 48(2): 682-694.
|
7 |
Feng HZ, Jin JP. A protocol to study ex vivo mouse working heart at human-like heart rate [J]. J Mol Cell Cardiol, 2018, 114: 175-184.
|
8 |
Frank O. On the dynamics of cardiac muscle (translated by Chapman CB and Wasserman E) [J]. Amer Heart J, 1959, 58
|
9 |
Schipke JD. Cardiac efficiency [J]. Basic Res Cardiol, 1994, 89(3): 207-240.
|
10 |
Bastos MB, Burkhoff D, Maly J, et al. Invasive left ventricle pressure-volume analysis: overview and practical clinical implications [J]. Eur Heart J, 2020, 41(12): 1286-1297.
|
11 |
Caballero A, Mao W, McKay R, et al. New insights into mitral heart valve prolapse after chordae rupture through fluid-structure interaction computational modeling [J]. Sci Rep, 2018, 8(1): 17306.
|
12 |
Han JC, Taberner AJ, Loiselle DS, et al. Cardiac efficiency and Starling's law of the heart [J]. J Physiol, 2022, 600(19): 4265-4285.
|
13 |
Miller LW. Cardiac ejection fraction [J]. J Amer Coll Cardiol, 2018, 72(6): 602-604.
|
14 |
Kim HJ. Correlation between electrical and mechanical dyssynchrony in patients with heart failure with reduced ejection fraction [J]. J Cardiovasc Imaging, 2022, 30(4): 320-321.
|
15 |
Furtado R, Juliasz MG, Chiu F, et al. Long-term mortality after acute coronary syndromes among patients with normal, mildly reduced, or reduced ejection fraction [J]. ESC Heart Fail, 2023, 10(1): 442-452.
|
16 |
Fialho GL, Wolf P, Walz R, et al. Left ventricle end-systolic elastance, arterial-effective elastance, and ventricle-arterial coupling in Epilepsy [J]. Acta Neurol Scand, 2021, 143(1): 34-38.
|
17 |
Pereira T, Bergqvist J, Vieira C, et al. Randomized study of the effects of cocoa-rich chocolate on the ventricle-arterial coupling and vascular function of young, healthy adults [J]. Nutrition, 2019, 63-64: 175-183.
|
18 |
Kass DA, Kelly RP. Ventriculo-arterial coupling: concepts, assumptions, and applications [J]. Ann Biomed Eng, 1992, 20(1): 41-62.
|
19 |
Little WC. Left ventricular-arterial coupling [J]. J Am Soc Echocardiogr, 2009, 22(11): 1246-1248.
|
20 |
Wang X, Long Y, He H, et al. Left ventricular-arterial coupling is associated with prolonged mechanical ventilation in severe post-cardiac surgery patients: an observational study [J]. BMC Anesthesiol, 2018, 18(1): 184.
|
21 |
Williams SG, Cooke GA, Wright DJ, et al. Peak exercise cardiac power output; a direct indicator of cardiac function strongly predictive of prognosis in chronic heart failure [J]. Eur Heart J, 2001, 22(16): 1496-1503.
|
22 |
Hughey S, Cole J, Booth G. Pulse wave analysis to estimate cardiac output: comment [J]. Anesthesiology, 2021, 135(2): 370-371.
|
23 |
Scolletta S, Bodson L, Donadello K, et al. Assessment of left ventricular function by pulse wave analysis in critically ill patients [J]. Intensive Care Med, 2013, 39(6): 1025-1033.
|
24 |
Kunig H, Tassani-Prell P, Engelmann L. Ejection fractions and pressure-heart rate product to evaluate cardiac efficiency. Continuous, real-time diagnosis using blood pressure and heart rate [J]. Med Klin Intensivmed Notfmed, 2014, 109(3): 196-199.
|
25 |
Lajoie RJ. The average "dynamic" blood pressure, the new criterion of cardiac efficiency [J]. Can Med Assoc J, 1933, 28(3): 276-280.
|
26 |
Kline JA, Thornton LR, Lopaschuk GD, et al. Heart function after severe hemorrhagic shock [J]. Shock, 1999, 12(6): 454-461.
|
27 |
Duburcq T, Durand A, Dessein A, et al. Comparison of fluid balance and hemodynamic and metabolic effects of sodium lactate versus sodium bicarbonate versus 0.9% NaCl in porcine endotoxic shock: a randomized, open-label, controlled study [J]. Crit Care, 2017, 21(1): 113.
|
28 |
Messina A, Romano SM, Bonicolini E, et al. Cardiac cycle efficiency and dicrotic pressure variations: new parameters for fluid therapy: An observational study [J]. Eur J Anaesthesiol, 2017, 34(11): 755-763.
|
29 |
Monge García MI, Gil Cano A, Gracia Romero M. Dynamic arterial elastance to predict arterial pressure response to volume loading in preload-dependent patients [J]. Crit Care, 2011, 15(1): R15.
|
30 |
Vanoverschelde JL, Wijns W, Essamri B, et al. Hemodynamic and mechanical determinants of myocardial O2 consumption in normal human heart: effects of dobutamine [J]. Am J Physiol, 1993, 265(6 Pt 2): H1884-1892.
|
31 |
Nikolaidis LA, Trumble D, Hentosz T, et al. Catecholamines restore myocardial contractility in dilated cardiomyopathy at the expense of increased coronary blood flow and myocardial oxygen consumption (MvO2 cost of catecholamines in heart failure) [J]. Eur J Heart Fail, 2004, 6(4): 409-419.
|
32 |
Rødland L, Rønning L, Kildal AB, et al. The β3 adrenergic receptor antagonist L-748, 337 attenuates Dobutamine-induced cardiac inefficiency while preserving inotropy in anesthetized pigs [J]. J Cardiovasc Pharmacol Ther, 2021, 26(6): 714-723.
|
33 |
Beanlands RS, Bach DS, Raylman R, et al. Acute effects of dobutamine on myocardial oxygen consumption and cardiac efficiency measured using carbon-11 acetate kinetics in patients with dilated cardiomyopathy [J]. J Am Coll Cardiol, 1993, 22(5): 1389-1398.
|
34 |
Rødland L, Rønning L, Kildal AB, et al. Combined therapy with Dobutamine and Omecamtiv Mecarbil in pigs with ischemic acute heart failure is attributed to the effect of Dobutamine [J]. J Cardiovasc Pharmacol Ther, 2020, 25(3): 232-239.
|
35 |
Iacobelli R, Ricci Z, Marinari E, et al. Effects of levosimendan on ventriculo-arterial coupling and cardiac efficiency in paediatric patients with single-ventricle physiology after surgical palliation: retrospective study [J]. Interact Cardiovasc Thorac Surg, 2020, 30(4): 623-629.
|
36 |
Monge García MI, Santos A, Diez Del Corral B, et al. Noradrenaline modifies arterial reflection phenomena and left ventricular efficiency in septic shock patients: a prospective observational study [J]. J Crit Care, 2018, 47: 280-286.
|
37 |
Gnakamene JB, Safar ME, Levy BI, et al. Left ventricular torsion associated with aortic stiffness in hypertension [J]. J Am Heart Assoc, 2018, 7(5): e007427.
|
38 |
Han JC, Tran K, Crossman DJ, et al. Cardiac mechanical efficiency is preserved in primary cardiac hypertrophy despite impaired mechanical function [J]. J Gen Physiol, 2021, 153(8): e202012841.
|
39 |
Baker HE, Tune JD, Mather KJ, et al. Acute SGLT-2i treatment improves cardiac efficiency during myocardial ischemia independent of Na+/H+ exchanger-1 [J]. Int J Cardiol, 2022, 363: 138-148.
|
40 |
Iida A, Sezai A, Orime Y, et al. An experimental study of the effects of IABP on coronary artery bypass graft flow waveform [J]. Ann Thorac Cardiovasc Surg, 2021, 27(3): 176-184.
|
41 |
Omar A, Eldegwy M, Allam M, et al. Comparison of Levosimendan versus IABP in patients with poor left ventricular function undergoing coronary artery bypass graft surgery [J]. Heart Surg Forum, 2020, 23(1): E093-E097.
|
42 |
Nevzorov R, Daum A, Jafari J, et al. Impact of the change in ESC guidelines on clinical characteristics and outcomes of cardiogenic shock patients receiving IABP therapy [J]. Cardiovasc Revasc Med, 2020, 21(1): 46-51.
|
43 |
Kapur NK, Hirst CS. Counterpulsation requires pulsation: IABP use in patients with heart failure without acute MI [J]. Catheter Cardiovasc Interv, 2018, 92(4): 711-712.
|
44 |
Gelsomino S, Lucà F, Renzulli A, et al. Increased coronary blood flow and cardiac contractile efficiency with intraaortic balloon counterpulsation in a porcine model of myocardial ischemia-reperfusion injury [J]. ASAIO J, 2011, 57(5): 375-381.
|
45 |
Delgado-Corcoran C, Wawrzynski SE, Flaherty B, et al. Extracorporeal membrane oxygenation and paediatric palliative care in an ICU [J]. Cardiol Young, 2022: 1-7.
|
46 |
Prichard E, Staudt AM, Garcia-Choudary T, et al. Prior extracorporeal membrane oxygenation (ECMO) experience and performance in high-fidelity simulation scenarios [J]. Cureus, 2022, 14(9): e29301.
|
47 |
Pang S, Miao G, Zhao X. Effects and safety of extracorporeal membrane oxygenation in the treatment of patients with ST-segment elevation myocardial infarction and cardiogenic shock: a systematic review and meta-analysis [J]. Front Cardiovasc Med, 2022, 9: 963002.
|
48 |
Ostadal P, Vondrakova D, Popkova M, et al. Aortic stenosis and mitral regurgitation modify the effect of venoarterial extracorporeal membrane oxygenation on left ventricular function in cardiogenic shock [J]. Sci Rep, 2022, 12(1): 17076.
|
49 |
Belohlavek J, Hunziker P, Donker DW. Left ventricular unloading and the role of ECpella [J]. Eur Heart J Suppl, 2021, 23(Suppl A): A27-A34.
|
50 |
Moustafa A, Khan MS, Saad M, et al. Impella support versus intra-aortic balloon pump in acute myocardial infarction complicated by cardiogenic shock: a meta-analysis [J]. Cardiovasc Revasc Med, 2022, 34: 25-31.
|
51 |
Varma U, Koutsifeli P, Benson VL, et al. Molecular mechanisms of cardiac pathology in diabetes-experimental insights [J]. Biochim Biophys Acta Mol Basis Dis, 2018, 1864(5 Pt B): 1949-1959.
|
52 |
Agasthi P, Pujari SH, Mookadam F, et al. Resting cardiac efficiency affects survival following transcatheter aortic valve replacement [J]. Cardiovasc Revasc Med, 2020, 21(11): 1327-1333.
|
53 |
Ky B, French B, May Khan A, et al. Ventricular-arterial coupling, remodeling, and prognosis in chronic heart failure [J]. J Am Coll Cardiol, 2013, 62(13): 1165-1172.
|
54 |
Han D, Pan S, Li H, et al. Prognostic value of cardiac cycle efficiency in children undergoing cardiac surgery: a prospective observational study [J]. Br J Anaesth, 2020, 125(3): 321-329.
|
55 |
Ruth BK, Bilchick KC, Mysore MM, et al. Increased pulmonary-systemic pulse pressure ratio is associated with increased mortality in group 1 pulmonary hypertension [J]. Heart Lung Circ, 2019, 28(7): 1059-1066.
|
56 |
Benza RL, Langleben D, Hemnes AR, et al. Riociguat and the right ventricle in pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension [J]. Eur Respir Rev, 2022, 31(166): 220061
|
57 |
Prinzen FW, Lumens J, Duchenn J, et al. Electro-energetics of biventricular, septal and conduction system pacing [J]. Arrhythm Electrophysiol Rev, 2021, 10(4): 250-257.
|
58 |
Saugel B, Vincent JL, Wagner JY. Personalized hemodynamic management [J]. Curr Opin Crit Care, 2017, 23(4): 334-341.
|
59 |
Oberhoffer FS, Li P, Jakob A, et al. Energy drinks decrease left ventricular efficiency in healthy children and teenagers: a randomized trial [J]. Sensors (Basel), 2022, 22(19): 7209
|
60 |
Nepal O, Humagain S, Koju RP. Study of echocardiographic measurements to estimate the physiological cardiac efficiency in apparently healthy patients visiting University Hospital for cardiac evaluation [J]. Kathmandu Univ Med J (KUMJ), 2021, 19(76): 424-428.
|
61 |
Lopaschuk GD, Karwi QG, Tian R, et al. Cardiac energy metabolism in heart failure [J]. Circ Res, 2021, 128(10): 1487-1513.
|
62 |
Gullberg GT, Shrestha UM, Veress AI, et al. Novel methodology for measuring regional myocardial efficiency [J]. IEEE Trans Med Imaging, 2021, 40(6): 1711-1725.
|
63 |
Lemaire F, Teboul JL, Cinotti L, et al. Acute left ventricular dysfunction during unsuccessful weaning from mechanical ventilation [J]. Anesthesiology, 1988, 69(2): 171-179.
|
64 |
Maso Talou GD, Babarenda Gamage TP, Nash MP. Efficient ventricular parameter estimation using AI-surrogate models [J]. Front Physiol, 2021, 12: 732351.
|
65 |
He H, Yuan S, Long Y, et al. Effect of norepinephrine challenge on cardiovascular determinants assessed using a mathematical model in septic shock: a physiological study [J]. Ann Transl Med, 2021, 9(7): 561.
|
66 |
Joosten A, Rinehart J, Van der Linden P, et al. Computer-assisted individualized hemodynamic management reduces intraoperative hypotension in intermediate- and high-risk surgery: a randomized controlled trial [J]. Anesthesiology, 2021, 135(2): 258-272.
|
67 |
Snider EJ, Vega SJ, Ross E, et al. Supervisory algorithm for autonomous hemodynamic management systems [J]. Sensors (Basel), 2022, 22(2): 529.
|
68 |
Smith R, Pretty CG, Shaw GM, et al. Predicting fluid-response, the heart of hemodynamic management: a model-based solution [J]. Comput Biol Med, 2021, 139: 104950.
|