切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2024, Vol. 10 ›› Issue (01) : 72 -78. doi: 10.3877/cma.j.issn.2096-1537.2024.01.012

综述

心脏效率在血流动力学治疗中的研究进展
弥亮钰1,2, 隆云1,()   
  1. 1. 100730 北京,中国医学科学院北京协和医院重症医学科
    2. 100730 北京,中国医学科学院北京协和医学院
  • 收稿日期:2022-12-18 出版日期:2024-02-28
  • 通信作者: 隆云
  • 基金资助:
    北京协和医院中央高水平医院临床科研专项(2022-PUMCH-B-115)

Research status of cardiac efficiency in hemodynamic therapy

Liangyu Mi1,2, Yun Long1,()   

  1. 1. Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
    2. Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
  • Received:2022-12-18 Published:2024-02-28
  • Corresponding author: Yun Long
引用本文:

弥亮钰, 隆云. 心脏效率在血流动力学治疗中的研究进展[J]. 中华重症医学电子杂志, 2024, 10(01): 72-78.

Liangyu Mi, Yun Long. Research status of cardiac efficiency in hemodynamic therapy[J]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2024, 10(01): 72-78.

心脏效率(CE)是由热力学衍生的血流动力学变量,指完成心脏外功所消耗的能量占心脏活动消耗的总能量的百分比,可由压力-容积(P-V)环曲线得出,近年来的衍生指标也可由微创设备直接获得。研究显示CE在血流动力学治疗过程中动态改变,是良好的预测临床结局的因素,需引起临床重视。本文就CE在血流动力学治疗中的研究进展作一综述。

Cardiac efficiency is a hemodynamic variable derived from thermodynamics. It refers to the percentage of energy consumed to complete cardiac external work to total energy consumed by cardiac activity. It can be obtained from P-V loop curve. In recent years, cardiac efficiency can also be derived directly from minimally invasive devices. Studies have shown that it can change dynamically during hemodynamic management, and it is a good predictor for prognosis, which requires clinical attention. This article reviews the research progress of cardiac efficiency in hemodynamic management.

图1 心室的P-V环。1 mmHg=0.133 kPa 注:PVA为压力容量面积;PE为潜在势能;SW为每搏功;MVO2为心肌耗氧量;P-V为压力-容积
图2 心室动脉偶联Ea/Ees可以代表心脏功效。黑色实线的斜率代表Ea,黑色虚线的斜率代表Ees;PVA由SW(浅蓝色A区)和PE(蓝色B区)组成;Ea/Ees可以反映B区与A区的比例,因此可以理解Ea/Ees可以替代心脏做功效率。1 mmHg=0.133 kPa 注:Ea为动脉收缩末期弹性;Ees为左心室收缩末期弹性;PE为潜在势能;SW为每搏功;PVA压力容量面积
1
De Backer D, Foulon P. Minimizing catecholamines and optimizing perfusion [J]. Crit Care, 2019, 23(Suppl 1): 149.
2
Chang MC, Mondy JS, Meredith JW, et al. Redefining cardiovascular performance during resuscitation: ventricular stroke work, power, and the pressure-volume diagram [J]. J Trauma, 1998, 45(3): 470-478.
3
Guarracino F, Bertini P, Pinsky MR. Cardiovascular determinants of resuscitation from sepsis and septic shock [J]. Crit Care, 2019, 23(1): 118.
4
Kuang SJ, Xiao QJ, Kuang MX, et al. Measurements of cardiac efficiency and internal work of the left ventricle via reconstructed impedance cardiography [J]. Physiol Meas, 2021, 42(3).
5
Granegger M, Choi Y, Locher B, et al. Comparative analysis of cardiac mechano-energetics in isolated hearts supported by pulsatile or rotary blood pumps [J]. Sci Rep, 2019, 9(1): 20058.
6
Murphy L, Davidson S, Chase JG, et al. Patient-specific monitoring and trend analysis of model-based markers of fluid responsiveness in sepsis: a proof-of-concept animal study [J]. Ann Biomed Eng, 2020, 48(2): 682-694.
7
Feng HZ, Jin JP. A protocol to study ex vivo mouse working heart at human-like heart rate [J]. J Mol Cell Cardiol, 2018, 114: 175-184.
8
Frank O. On the dynamics of cardiac muscle (translated by Chapman CB and Wasserman E) [J]. Amer Heart J, 1959, 58
9
Schipke JD. Cardiac efficiency [J]. Basic Res Cardiol, 1994, 89(3): 207-240.
10
Bastos MB, Burkhoff D, Maly J, et al. Invasive left ventricle pressure-volume analysis: overview and practical clinical implications [J]. Eur Heart J, 2020, 41(12): 1286-1297.
11
Caballero A, Mao W, McKay R, et al. New insights into mitral heart valve prolapse after chordae rupture through fluid-structure interaction computational modeling [J]. Sci Rep, 2018, 8(1): 17306.
12
Han JC, Taberner AJ, Loiselle DS, et al. Cardiac efficiency and Starling's law of the heart [J]. J Physiol, 2022, 600(19): 4265-4285.
13
Miller LW. Cardiac ejection fraction [J]. J Amer Coll Cardiol, 2018, 72(6): 602-604.
14
Kim HJ. Correlation between electrical and mechanical dyssynchrony in patients with heart failure with reduced ejection fraction [J]. J Cardiovasc Imaging, 2022, 30(4): 320-321.
15
Furtado R, Juliasz MG, Chiu F, et al. Long-term mortality after acute coronary syndromes among patients with normal, mildly reduced, or reduced ejection fraction [J]. ESC Heart Fail, 2023, 10(1): 442-452.
16
Fialho GL, Wolf P, Walz R, et al. Left ventricle end-systolic elastance, arterial-effective elastance, and ventricle-arterial coupling in Epilepsy [J]. Acta Neurol Scand, 2021, 143(1): 34-38.
17
Pereira T, Bergqvist J, Vieira C, et al. Randomized study of the effects of cocoa-rich chocolate on the ventricle-arterial coupling and vascular function of young, healthy adults [J]. Nutrition, 2019, 63-64: 175-183.
18
Kass DA, Kelly RP. Ventriculo-arterial coupling: concepts, assumptions, and applications [J]. Ann Biomed Eng, 1992, 20(1): 41-62.
19
Little WC. Left ventricular-arterial coupling [J]. J Am Soc Echocardiogr, 2009, 22(11): 1246-1248.
20
Wang X, Long Y, He H, et al. Left ventricular-arterial coupling is associated with prolonged mechanical ventilation in severe post-cardiac surgery patients: an observational study [J]. BMC Anesthesiol, 2018, 18(1): 184.
21
Williams SG, Cooke GA, Wright DJ, et al. Peak exercise cardiac power output; a direct indicator of cardiac function strongly predictive of prognosis in chronic heart failure [J]. Eur Heart J, 2001, 22(16): 1496-1503.
22
Hughey S, Cole J, Booth G. Pulse wave analysis to estimate cardiac output: comment [J]. Anesthesiology, 2021, 135(2): 370-371.
23
Scolletta S, Bodson L, Donadello K, et al. Assessment of left ventricular function by pulse wave analysis in critically ill patients [J]. Intensive Care Med, 2013, 39(6): 1025-1033.
24
Kunig H, Tassani-Prell P, Engelmann L. Ejection fractions and pressure-heart rate product to evaluate cardiac efficiency. Continuous, real-time diagnosis using blood pressure and heart rate [J]. Med Klin Intensivmed Notfmed, 2014, 109(3): 196-199.
25
Lajoie RJ. The average "dynamic" blood pressure, the new criterion of cardiac efficiency [J]. Can Med Assoc J, 1933, 28(3): 276-280.
26
Kline JA, Thornton LR, Lopaschuk GD, et al. Heart function after severe hemorrhagic shock [J]. Shock, 1999, 12(6): 454-461.
27
Duburcq T, Durand A, Dessein A, et al. Comparison of fluid balance and hemodynamic and metabolic effects of sodium lactate versus sodium bicarbonate versus 0.9% NaCl in porcine endotoxic shock: a randomized, open-label, controlled study [J]. Crit Care, 2017, 21(1): 113.
28
Messina A, Romano SM, Bonicolini E, et al. Cardiac cycle efficiency and dicrotic pressure variations: new parameters for fluid therapy: An observational study [J]. Eur J Anaesthesiol, 2017, 34(11): 755-763.
29
Monge García MI, Gil Cano A, Gracia Romero M. Dynamic arterial elastance to predict arterial pressure response to volume loading in preload-dependent patients [J]. Crit Care, 2011, 15(1): R15.
30
Vanoverschelde JL, Wijns W, Essamri B, et al. Hemodynamic and mechanical determinants of myocardial O2 consumption in normal human heart: effects of dobutamine [J]. Am J Physiol, 1993, 265(6 Pt 2): H1884-1892.
31
Nikolaidis LA, Trumble D, Hentosz T, et al. Catecholamines restore myocardial contractility in dilated cardiomyopathy at the expense of increased coronary blood flow and myocardial oxygen consumption (MvO2 cost of catecholamines in heart failure) [J]. Eur J Heart Fail, 2004, 6(4): 409-419.
32
Rødland L, Rønning L, Kildal AB, et al. The β3 adrenergic receptor antagonist L-748, 337 attenuates Dobutamine-induced cardiac inefficiency while preserving inotropy in anesthetized pigs [J]. J Cardiovasc Pharmacol Ther, 2021, 26(6): 714-723.
33
Beanlands RS, Bach DS, Raylman R, et al. Acute effects of dobutamine on myocardial oxygen consumption and cardiac efficiency measured using carbon-11 acetate kinetics in patients with dilated cardiomyopathy [J]. J Am Coll Cardiol, 1993, 22(5): 1389-1398.
34
Rødland L, Rønning L, Kildal AB, et al. Combined therapy with Dobutamine and Omecamtiv Mecarbil in pigs with ischemic acute heart failure is attributed to the effect of Dobutamine [J]. J Cardiovasc Pharmacol Ther, 2020, 25(3): 232-239.
35
Iacobelli R, Ricci Z, Marinari E, et al. Effects of levosimendan on ventriculo-arterial coupling and cardiac efficiency in paediatric patients with single-ventricle physiology after surgical palliation: retrospective study [J]. Interact Cardiovasc Thorac Surg, 2020, 30(4): 623-629.
36
Monge García MI, Santos A, Diez Del Corral B, et al. Noradrenaline modifies arterial reflection phenomena and left ventricular efficiency in septic shock patients: a prospective observational study [J]. J Crit Care, 2018, 47: 280-286.
37
Gnakamene JB, Safar ME, Levy BI, et al. Left ventricular torsion associated with aortic stiffness in hypertension [J]. J Am Heart Assoc, 2018, 7(5): e007427.
38
Han JC, Tran K, Crossman DJ, et al. Cardiac mechanical efficiency is preserved in primary cardiac hypertrophy despite impaired mechanical function [J]. J Gen Physiol, 2021, 153(8): e202012841.
39
Baker HE, Tune JD, Mather KJ, et al. Acute SGLT-2i treatment improves cardiac efficiency during myocardial ischemia independent of Na+/H+ exchanger-1 [J]. Int J Cardiol, 2022, 363: 138-148.
40
Iida A, Sezai A, Orime Y, et al. An experimental study of the effects of IABP on coronary artery bypass graft flow waveform [J]. Ann Thorac Cardiovasc Surg, 2021, 27(3): 176-184.
41
Omar A, Eldegwy M, Allam M, et al. Comparison of Levosimendan versus IABP in patients with poor left ventricular function undergoing coronary artery bypass graft surgery [J]. Heart Surg Forum, 2020, 23(1): E093-E097.
42
Nevzorov R, Daum A, Jafari J, et al. Impact of the change in ESC guidelines on clinical characteristics and outcomes of cardiogenic shock patients receiving IABP therapy [J]. Cardiovasc Revasc Med, 2020, 21(1): 46-51.
43
Kapur NK, Hirst CS. Counterpulsation requires pulsation: IABP use in patients with heart failure without acute MI [J]. Catheter Cardiovasc Interv, 2018, 92(4): 711-712.
44
Gelsomino S, Lucà F, Renzulli A, et al. Increased coronary blood flow and cardiac contractile efficiency with intraaortic balloon counterpulsation in a porcine model of myocardial ischemia-reperfusion injury [J]. ASAIO J, 2011, 57(5): 375-381.
45
Delgado-Corcoran C, Wawrzynski SE, Flaherty B, et al. Extracorporeal membrane oxygenation and paediatric palliative care in an ICU [J]. Cardiol Young, 2022: 1-7.
46
Prichard E, Staudt AM, Garcia-Choudary T, et al. Prior extracorporeal membrane oxygenation (ECMO) experience and performance in high-fidelity simulation scenarios [J]. Cureus, 2022, 14(9): e29301.
47
Pang S, Miao G, Zhao X. Effects and safety of extracorporeal membrane oxygenation in the treatment of patients with ST-segment elevation myocardial infarction and cardiogenic shock: a systematic review and meta-analysis [J]. Front Cardiovasc Med, 2022, 9: 963002.
48
Ostadal P, Vondrakova D, Popkova M, et al. Aortic stenosis and mitral regurgitation modify the effect of venoarterial extracorporeal membrane oxygenation on left ventricular function in cardiogenic shock [J]. Sci Rep, 2022, 12(1): 17076.
49
Belohlavek J, Hunziker P, Donker DW. Left ventricular unloading and the role of ECpella [J]. Eur Heart J Suppl, 2021, 23(Suppl A): A27-A34.
50
Moustafa A, Khan MS, Saad M, et al. Impella support versus intra-aortic balloon pump in acute myocardial infarction complicated by cardiogenic shock: a meta-analysis [J]. Cardiovasc Revasc Med, 2022, 34: 25-31.
51
Varma U, Koutsifeli P, Benson VL, et al. Molecular mechanisms of cardiac pathology in diabetes-experimental insights [J]. Biochim Biophys Acta Mol Basis Dis, 2018, 1864(5 Pt B): 1949-1959.
52
Agasthi P, Pujari SH, Mookadam F, et al. Resting cardiac efficiency affects survival following transcatheter aortic valve replacement [J]. Cardiovasc Revasc Med, 2020, 21(11): 1327-1333.
53
Ky B, French B, May Khan A, et al. Ventricular-arterial coupling, remodeling, and prognosis in chronic heart failure [J]. J Am Coll Cardiol, 2013, 62(13): 1165-1172.
54
Han D, Pan S, Li H, et al. Prognostic value of cardiac cycle efficiency in children undergoing cardiac surgery: a prospective observational study [J]. Br J Anaesth, 2020, 125(3): 321-329.
55
Ruth BK, Bilchick KC, Mysore MM, et al. Increased pulmonary-systemic pulse pressure ratio is associated with increased mortality in group 1 pulmonary hypertension [J]. Heart Lung Circ, 2019, 28(7): 1059-1066.
56
Benza RL, Langleben D, Hemnes AR, et al. Riociguat and the right ventricle in pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension [J]. Eur Respir Rev, 2022, 31(166): 220061
57
Prinzen FW, Lumens J, Duchenn J, et al. Electro-energetics of biventricular, septal and conduction system pacing [J]. Arrhythm Electrophysiol Rev, 2021, 10(4): 250-257.
58
Saugel B, Vincent JL, Wagner JY. Personalized hemodynamic management [J]. Curr Opin Crit Care, 2017, 23(4): 334-341.
59
Oberhoffer FS, Li P, Jakob A, et al. Energy drinks decrease left ventricular efficiency in healthy children and teenagers: a randomized trial [J]. Sensors (Basel), 2022, 22(19): 7209
60
Nepal O, Humagain S, Koju RP. Study of echocardiographic measurements to estimate the physiological cardiac efficiency in apparently healthy patients visiting University Hospital for cardiac evaluation [J]. Kathmandu Univ Med J (KUMJ), 2021, 19(76): 424-428.
61
Lopaschuk GD, Karwi QG, Tian R, et al. Cardiac energy metabolism in heart failure [J]. Circ Res, 2021, 128(10): 1487-1513.
62
Gullberg GT, Shrestha UM, Veress AI, et al. Novel methodology for measuring regional myocardial efficiency [J]. IEEE Trans Med Imaging, 2021, 40(6): 1711-1725.
63
Lemaire F, Teboul JL, Cinotti L, et al. Acute left ventricular dysfunction during unsuccessful weaning from mechanical ventilation [J]. Anesthesiology, 1988, 69(2): 171-179.
64
Maso Talou GD, Babarenda Gamage TP, Nash MP. Efficient ventricular parameter estimation using AI-surrogate models [J]. Front Physiol, 2021, 12: 732351.
65
He H, Yuan S, Long Y, et al. Effect of norepinephrine challenge on cardiovascular determinants assessed using a mathematical model in septic shock: a physiological study [J]. Ann Transl Med, 2021, 9(7): 561.
66
Joosten A, Rinehart J, Van der Linden P, et al. Computer-assisted individualized hemodynamic management reduces intraoperative hypotension in intermediate- and high-risk surgery: a randomized controlled trial [J]. Anesthesiology, 2021, 135(2): 258-272.
67
Snider EJ, Vega SJ, Ross E, et al. Supervisory algorithm for autonomous hemodynamic management systems [J]. Sensors (Basel), 2022, 22(2): 529.
68
Smith R, Pretty CG, Shaw GM, et al. Predicting fluid-response, the heart of hemodynamic management: a model-based solution [J]. Comput Biol Med, 2021, 139: 104950.
[1] 林乐清, 曹伟, 唐泽文, 王白永, 王磊, 张宁, 唐文学. 脓毒性休克患者液体复苏时外周灌注指数的临床指导价值研究[J]. 中华危重症医学杂志(电子版), 2022, 15(06): 460-465.
[2] 陈星星, 胡才宝, 颜默磊, 蔡国龙. 二氧化碳偏移度对脓毒性休克患者液体复苏后微循环变化的预测价值[J]. 中华危重症医学杂志(电子版), 2019, 12(05): 311-316.
[3] 金光勇, 林乐清, 梁栋诚, 张烛仙, 王白永, 王斌, 唐文学, 郭亮. 全心舒张末期容积指数对心功能不全并脓毒性休克患者液体复苏的应用价值[J]. 中华危重症医学杂志(电子版), 2018, 11(06): 377-381.
[4] 谢友军, 莫武桂, 韦跃, 韦蓉, 卢功志. 限制性液体复苏策略对儿童脓毒性休克失代偿期患儿的临床疗效[J]. 中华妇幼临床医学杂志(电子版), 2020, 16(06): 687-694.
[5] 中华医学会烧伤外科学分会小儿烧伤学组. 儿童烧伤早期休克液体复苏专家共识(2023版)[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 371-376.
[6] 郭光华, 付忠华. 重新评价人血白蛋白在危重烧伤患者液体复苏中的应用[J]. 中华损伤与修复杂志(电子版), 2022, 17(06): 461-465.
[7] 邓兴旺, 齐旭辉, 杨绍贤, 张龙, 金少华, 杨涛, 蒲文兰, 李传吉. 人血白蛋白在重症烧伤休克早期液体复苏中应用的临床观察[J]. 中华损伤与修复杂志(电子版), 2022, 17(01): 47-53.
[8] 林国安. 小儿烧伤流行特点和早期处理[J]. 中华损伤与修复杂志(电子版), 2018, 13(04): 247-252.
[9] 刘剑戎, 范明明, 郭煜. 器官捐献者转介时的临床特征分析[J]. 中华移植杂志(电子版), 2023, 17(03): 129-133.
[10] 崔广清, 葛玲玉. PiCCO指导心功能不全合并脓毒症休克患者精准救治的效果[J]. 中华重症医学电子杂志, 2023, 09(02): 185-190.
[11] 陈传希, 欧阳彬. 血流动力学不稳定的重症患者肠内营养的监测与评估[J]. 中华重症医学电子杂志, 2022, 08(04): 310-312.
[12] 刘一娜, 马晓春. 脓毒症性心肌病的血管活性药物选择[J]. 中华重症医学电子杂志, 2020, 06(02): 128-131.
[13] 张倩, 胡振杰, 刘丽霞. 主动脉流速时间积分变异度对重症脓毒症患者液体复苏的指导[J]. 中华重症医学电子杂志, 2020, 06(01): 77-85.
[14] 胡庆河, 隆云, 王旭, 周润奭. 液体复苏在高呼吸末正压通气导致的肺泡微循环障碍中的作用[J]. 中华重症医学电子杂志, 2019, 05(01): 20-26.
[15] 姜帅宇, 路晓光, 吴萌萌. 限制性液体复苏对脓毒症休克患者疗效的meta分析[J]. 中华卫生应急电子杂志, 2021, 07(01): 18-25.
阅读次数
全文


摘要