切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2016, Vol. 02 ›› Issue (01) : 50 -58. doi: 10.3877/cma.j.jssn.2096-1537.2016.01.012

所属专题: 文献

基础研究

跨肺压法设置呼气末正压通气对急性呼吸窘迫综合征模型猪肺保护作用的研究
张敏1, 颜培夏2, 吴晓燕2, 郑瑞强2,*,*()   
  1. 1. 225001 扬州,苏北人民医院重症医学科;215600 张家港市第一人民医院重症医学科
    2. 225001 扬州,苏北人民医院重症医学科
  • 收稿日期:2015-12-27 出版日期:2016-02-28
  • 通信作者: 郑瑞强
  • 基金资助:
    江苏省"333高层次人才培养工程"基金(2011-15); 扬州市科技攻关-社会发展科技攻关(2012133)

Positive end expiratory pressure guided by transpulmonary pressure on lung protection in pig model with acute respiratory distress syndrome

Min Zhang1, Peixia Yan2, Xiaoyan Wu2, Ruiqiang Zhang2()   

  1. 1. Intensive Care Unit, Intensive Care Unit, Northern Jian gsu People's Hospital, Yangzhou 225001, China; Zhangjiagang First People's Hospital, Zhangjiagang 215600, China
    2. Intensive Care Unit, Intensive Care Unit, Northern Jiangsu People's Hospital, Yangzhou 225001, China
  • Received:2015-12-27 Published:2016-02-28
  • Corresponding author: Ruiqiang Zhang
  • About author:
    Corresponding author: Zhang Ruiqiang, Email:
引用本文:

张敏, 颜培夏, 吴晓燕, 郑瑞强. 跨肺压法设置呼气末正压通气对急性呼吸窘迫综合征模型猪肺保护作用的研究[J/OL]. 中华重症医学电子杂志, 2016, 02(01): 50-58.

Min Zhang, Peixia Yan, Xiaoyan Wu, Ruiqiang Zhang. Positive end expiratory pressure guided by transpulmonary pressure on lung protection in pig model with acute respiratory distress syndrome[J/OL]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2016, 02(01): 50-58.

目的

比较跨肺压法与最佳氧合法选择最佳呼气末正压通气(PEEP),对急性呼吸窘迫综合征(ARDS)模型猪肺损伤作用的影响。

方法

12只普通家猪随机分为跨肺压组和最佳氧合组,均给予有创通气、留置股动脉导管接PiCCO仪监测血流动力学及留置右颈内静脉导管测中心静脉压(CVP),稳定30 min后,行0.9%氯化钠溶液肺泡灌洗复制猪ARDS模型。模型成功后,在充分肺复张的基础上,两组分别使用跨肺压法和最佳氧合法设置最佳PEEP,并以此维持通气4 h。观察并记录基础状态(PEEP 5 cmH2O)(Tbase)、ARDS模型稳定(PEEP 5 cmH2O)(T0)和最佳PEEP维持机械通气4 h期间(T1-T4)的肺毛细血管通透性指数(PVPI)、血管外肺水指数(EVLWI)及呼吸力学变化,并在Tbase、T0、T4 3个时间点采集血标本,酶联免疫吸附剂测定法(ELISA)测定血白介素1β(IL-1β)、白介素6(IL-6)炎症因子表达水平。实验结束处死动物,留取猪右上肺、右下肺背侧、右下肺腹侧,行免疫组化测肺组织核转录因子kappa B(NF-κB)、IL-1β、IL-6水平,比色法测肺组织抗髓过氧化物酶(MPO)活性,同时观察病理改变及测湿干比反应肺水含量。

结果

呼吸力学方面:跨肺压组最佳PEEP、Pm、Paw-exp、Ptrans-exp明显低于最佳氧合组(P<0.05),而跨肺压组Ptrans-ins在最佳PEEP通气第3小时、第4小时明显低于最佳氧合组(P<0.05)。炎症反应方面:右肺上叶肺组织NF-κB、右全肺肺组织IL-6、右肺下叶背侧及右全肺MPO表达跨肺压组均明显低于最佳氧合组(P<0.05)。肺水肿指标方面:两组最佳PEEP通气4h后PVPI、EVLWI以及各部位湿干比(W/D)差异无统计学意义(P>0.05)。病理方面:跨肺压组右肺上叶、下叶背侧及右全肺损伤病理评分低于最佳氧合组(P>0.05)。

结论

通过跨肺压法设置最佳PEEP能够在维持肺泡开放状态的同时,减少肺炎症反应发生,预防肺损伤,达到肺保护作用。

Objective

To investigate the effect of positive end expiratory pressure (PEEP) guided by transpulmonary pressure compared with the optimal oxygenation-directed PEEP on lung injury in a pig model with acute respiratory distress syndrome(ARDS) .

Methods

Twelve ordinary pigs were randomly divided into a transpulmonary pressure group (n=6) and an optimal oxygenation group (n=6) . Both groups were given invasive mechanical ventilation. Their hemodynamics was monitored, and catheterization of the right internal jugular vein was done to test CVP. The hemodynamics was stable 30 minutes after the operation. The pigs were given lung lavage with normal saline to induce ARDS. The optimal PEEP was set by transpulmonary pressure titration or optimal oxygenation after lung recruitment. Thereafter, ventilation continued for 4 hours. PVPI, EVLWI and respiratory mechanics changes were recorded before lung lavage with saline (PEEP 5 cmH2O) (Tbase), after stabilization of ARDS (PEEP 5 cmH2O) (T0) and after using optimal PEEP for 0, l, 2, 3 and 4 hours (T1-T4) . At the time of Tbase, T0 and T4, blood was collected to detect interleukin-1β and -6. At the end the experiment, the right upper, right lower ventral, right lower dorsal lung tissues were taken for immunohistochemical test of NF-ΚB, IL-1β and IL-6. Lung homogenates were prepared to detect myeloperoxidase (MPO) . At the same time, lung tissue was taken to observe pathological changes and record the lung wet/dry weight ratio (W/D) .

Results

The levels of PEEP, Pm, Paw-exp, and Ptrans-exp in the transpulmonary pressure group were significantly lower than those in the optimal oxygenation group (P<0. 05), and the levels of Ptrans-ins at T3 and T4 were also significantly lower than those in the optimal oxygenation group (P<0. 05) . The levels of NF-κB in the right upper lung tissue, IL-6 in the right lung tissue and MPO in the right lower dorsal lung tissue were significantly lower in the transpulmonary pressure group than those in the optimal oxygenation group (P<0. 05) . After mechanical ventilation set by optimal PEEP in the two groups, the levels of PVPI, EVLWI and W/D were not significantly different between the two groups (P>0. 05) . The pathological scores of the right upper, right lower dorsal, and right lung tissues were all significantly lower in the transpulmonary pressure group than those in the optimal oxygenation group (P>0. 05) .

Conclusion

PEEP guided by transpulmonary pressure can open the alveoli, reduce the inflammatory response, prevent the ventilator-associated lung injury, and then reach the effect of lung protection.

表1 各组ARDS模型猪呼吸力学各指标的变化(±s
组别 猪数 PEEP(cmH2O)
T base T0 T1 T2 T3 T4
跨肺压组 6 5.00±0.00 5.00±0.00 6.00±0.89 c 6.17±0.98abc 6.50±0.55abc 6.00±0.89c
最佳氧合组 6 5.00±0.00 5.00±0.00 11.33±2.07ab 11.33±2.07ab 11.33±2.07ab 11.33±2.07ab
组别 猪数 Pm(cmH2O)
T base T0 T1 T2 T3 T4
跨肺压组 6 7.92±1.32 9.87±2.38 11.06±2.01c 10.63±1.55c 11.10±1.99c 10.83±1.43c
最佳氧合组 6 8.13±0.27 11.33±2.07a 13.50±0.55ab 13.67±1.51ab 13.33±1.03ab 13.50±0.55ab
组别 猪数 Paw-ins(cmH2O)
T base T0 T1 T2 T3 T4
跨肺压组 6 14.00±4.00 20.33±8.02 23.17±5.78 23.17±3.92 22.67±4.5 21.00±6.20
最佳氧合组 6 17.00±4.58 25.16±4.58a 24.67±4.03a 24.67±4.59a 22.67±6.09a 23.67±2.88a
组别 猪数 Paw-exp(cmH2O)
T base T0 T1 T2 T3 T4
跨肺压组 6 5.23±0.81 4.98±0.44 6.06±0.72bc 6.42±0.82abc 6.50±0.60abc 6.12±0.58bc
最佳氧合组 6 5.38±0.62 4.61±0.56 12.01±2.12ab 11.95±1.85ab 11.68±3.09ab 12.25±2.96ab
组别 猪数 PES-ins(cmH2O)
T base T0 T1 T2 T3 T4
跨肺压组 6 6.37±1.37 7.00±1.03 6.97±1.29 7.58±0.46 6.12±0.58 7.45±0.90
最佳氧合组 6 7.33±1.39 5.97±1.40 7.27±2.51 7.10±1.70 6.93±1.52 6.97±1.89
组别 猪数 PES-exp(cmH2O)
T base T0 T1 T2 T3 T4
跨肺压组 6 4.93±1.54 5.10±0.99 5.12±1.13 5.78±0.60 5.20±0.54 5.42±0.56
最佳氧合组 6 5.10±1.47 5.16±0.74 5.50±2.13 5.03±1.75 4.60±1.40 4.27±1.77
组别 猪数 Ptrans-ins(cmH2O)
T base T0 T1 T2 T3 T4
跨肺压组 6 6.58±0.96 11.48±3.12a 12.77±2.07a 12.68±2.58a 12.30±0.84ac 11.10±2.35ac
最佳氧合组 6 6.13±4.40 15.40±6.30a 15.33±6.23a 15.36±3.58a 15.88±3.79a 16.40±3.70a
组别 猪数 Ptrans-exp(cmH2O)
T base T0 T1 T2 T3 T4
跨肺压组 6 0.30±1.01 -0.12±0.83 0.95±0.64c 0.63±0.38c 1.30±0.43bc 0.70±0.79c
最佳氧合组 6 0.28±1.78 -0.55±0.97a 6.52±4.02ab 6.91±3.18ab 7.08±4.18ab 7.98±4.40ab
组别 猪数 Crs(ml/cmH2O)
T base T0 T1 T2 T3 T4
跨肺压组 6 36.33±12.64 15.09±3.17a 15.44±2.71a 17.47±5.53a 18.81±3.04a 17.31±5.56a
最佳氧合组 6 26.53±9.22 10.25±4.30a 16.95±6.48a 14.56±5.07a 14.29±5.85a 15.36±4.41a
组别 猪数 CCW(ml/cmH2O)
T base T0 T1 T2 T3 T4
跨肺压组 6 109.45±19.28 74.60±30.92 72.27±19.8 72.26±47.72 95.71±34.03 93.52±23.03
最佳氧合组 6 92.69±24.34 70.25±6.45 103.59±55.34 80.46±45.47 77.78±56.34 72.68±47.87
组别 猪数 CL(ml/cmH2O)
T base T0 T1 T2 T3 T4
跨肺压组 6 52.42±25.75 19.36±5.04a 18.58±2.45a 21.23±7.17a 21.63±4.29a 23.10±8.74a
最佳氧合组 6 42.16±24.53 12.47±6.19a 20.42±7.27a 18.30±5.25a 18.25±6.08a 20.77±4.38a
表2 各组ARDS模型猪肺组织炎症指标测量(HIS评分)(±s
表3 各组ARDS模型猪血清炎症指标测量(ng/L, ±s
表4 各组ARDS模型猪肺水肿指标变化(±s
表5 各组ARDS模型猪肺组织W/D测量(±s
表6 各组ARDS模型猪肺组织各部位病理评分(±s
图6 最佳氧合组猪急性呼吸窘迫综合征模型右下叶背侧肺组织光镜病理图(HE×200)
[1]
Phua J, Badia JR, Adhikari NK, et al. Has mortality from acute respiratory distress syndrome decreased over time? A systematic review[J]. Am J Respir Crit Care Med, 2009, 179(3):220–227.
[2]
Erickson SE, Martin GS, Davis JL, et al. Recent trends in acute lung injury mortality: 1996-2005[J]. Crit Care Med, 2009, 37(5):1574–1579.
[3]
Dreyfuss D, Saumon G. Ventilator-induced lung injury: lessons from experimental studies[J]. Am J Respir Crit Care Med, 1998, 157(1):294–323.
[4]
Baydur A, Cha EJ, Sassoon CS. Validation of esophageal balloon technique at different lung volumes and postures[J]. J Appl Physiol, 1987, 62(1):315–321.
[5]
Benditt JO. Esophageal and gastric pressure measurements[J]. Resp care, 2005, 50(1):68–77.
[6]
Talmor DS, Fessler HE. Are esophageal pressure measurements important in clinical decision-making in mechanically ventilated patients?[J]. Respir Care, 2010, 55(2):162–174.
[7]
Lachmann B, Robertson B, Vogel J. In vivo lung lavage as fill experimental model of the respiratory distress syndrome[J]. Acts Anaesthesiol Scand, 1980, 24(3):231–236.
[8]
Grasso S, Mascia L, Del Turco M, et al. Effects of recruiting maneuvers in patients with acute respiratory distress syndrome ventilated with protective ventilatory strategy[J]. Anesthesiology, 2002, 96(4):795–802.
[9]
Ranieri VM, Surer PM, Torterella C, et al. Effect of mechanical ventilationon inflmnmatory mediators in patients with acute respiratory distress syndrome: a randomized controued trial[J]. JAMA, 1999, 282(1):54–61.
[10]
Rouby JJ, Brochard L. Tidal recruitment and overinflation in acute respiratory distress syndrome: yin and yang[J]. Am J Respir Crit Care Med, 2007, 175(2):104–106.
[11]
俞森洋. 重视对急性呼吸窘迫综合征肺保护性通气策略的研究和应用[J]. 中国呼吸与危重监护杂志, 2002, 1(4):193–196.
[12]
Grigoryev DN, Finigan JH, Hasseun P, et al. Science review: marching for gene candidates in acute lung injury[J]. Crit Care, 2005, 8(6):440–447.
[13]
Li X, Stark GR. NFkappaB-dependent signaling pathways[J]. Exp Hematol, 2002, 30(4):285–296.
[14]
Davies MG, Hagen PO. Systemic inflammatory response syndrome[J]. Br J Surg, 1997, 84(7):920–935.
[15]
Bauer TT, Monton C, Tortes A, et al. Comparison of systemic cytokine levels in patients with acute respiratory distress syndrome, severe pneumonia, and controls[J]. Thorax, 2000, 55(1):46–52.
[16]
Hirakawa A, Sakaoto H, Shimizu R. Effect of positive end-expiratory pressure on extravascular lung water and cardiopulmonary function in dogs with experimental severe hydrostastic pulmonary edema[J]. Journal of Veterinary Medical Science, 1996, 58(4):349–354.
[17]
Manuel R, Enrique F, Benjamin H. Immediate application of positive-end expiratory pressure is more effective than delayed. Positive end-expiratory pressure to reduce extravascular lung water[J]. Critical Care Medicine, 1999, 27(2):380–384.
[18]
高伟波, 朱继红. 血管外肺水测定在临床的应用[J]. 中华急诊医学杂志, 2010, 19(9):1000–1003.
[19]
Saul G, Feeley T, Minh M. Effect of graded administration of PEEP on lung water in noncardiogenic pulmonary edema[J]. Critical Care Medicine, 1982, 10(10):667–669.
[20]
Szakmany T, Heigl P, Molnar Z.  Correlation between extravascular lung water and oxygenation in ALL/ARDS patients in septic shock: possible role in the development of atelectasis[J]. Anaesthesia and Intensive Care, 2004, 32(2):196–201.
[21]
陈新, 郑晶晶, 郭松文, 等. 犬急性肺损伤早期不同通气策略对气体交换和血管外肺水的影响[J]. 中国病理生理杂志, 2012, 28(10):1873–1878.
[22]
边伟帅, 晁彦公, 陈炜, 等. 呼气末正压对急性呼吸窘迫综合征猪呼吸及循环状态的影响[J]. 中华结核和呼吸杂志, 2013, 36(8):613–165.
[23]
de Chazal I, Hubmayr RD. Novel aspects of pulmonary mechanics in intensive care[J]. Br J Anaesth, 2003, 91(1):81–91.
[24]
Hedenstierna G. Esophageal pressure: benefit and limitations[J]. Minerva Anestsiol, 2012, 78(8):959–966.
[25]
Benditt JO. Esophageal and gastric pressure measurements[J]. Respir Care, 2005, 50(1):68–75.
[26]
Talmor D, Sarge T, O'Donnell CR.  Esophageal and transpulmonary pressures in acute respiratory failure[J]. Critical Care Medicine, 2006, 34(5):1389–1394.
[27]
Washko GR, O'Donnell CR, Loring SH. Volume-related and volume-independent effects of posture on esophageal and transpulmonary pressures in healthy subjects[J]. J Appl PHysiol, 2006, 100(3):753–758.
[28]
Pelosi P, Goldner M, McKibben A, et al. Recruitment and derecruitment during acute respiratory failure: an experimental study[J]. Am J Respir Crit Care Med, 2001, 164(1):122–130.
[29]
Pelosi P, D'Andrea L, Vitale G, et al. Vertical gradient of regional lung inflation in adult respiratory distress syndrome[J]. Am J Respir Crit Care Med, 1994, 149(1):8–13.
[1] 江雅婷, 刘林峰, 沈辰曦, 陈奔, 刘婷, 龚裕强. 组织相关巨噬素3 保护肺血管内皮糖萼治疗急性呼吸窘迫综合征的机制研究[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(05): 353-362.
[2] 李振翮, 魏长青, 甄国栋, 李振富. 脓毒症并发急性呼吸窘迫综合征患者血清S1P、Wnt5a变化及其临床意义[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 293-300.
[3] 雷子威, 凌萍, 沈纵, 魏晨如, 朱邦晖, 伍国胜, 孙瑜. 类器官肺损伤疾病模型构建及应用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 531-535.
[4] 李智, 冯芸. NF-κB 与MAPK 信号通路及其潜在治疗靶点在急性呼吸窘迫综合征中的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 840-843.
[5] 张敏龙, 杨翠平, 王博, 崔云杰, 金发光. MiR-200b-3p 通过抑制HIF-1α 表达减轻海水吸入诱导的肺水肿作用及机制[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 696-700.
[6] 井发红, 李丽娜, 高婷, 高艳梅, 杨楠, 李卓, 慕玉东. 肺癌立体定向放疗血清SAP 和MMPs 表达及临床意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 707-713.
[7] 张璇, 高杨, 房雅君, 姚艳玲. 保护性机械通气在肺癌胸腔镜肺段切除术中的临床应用[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 563-567.
[8] 王晓霞, 乌丹, 张江英, 乌雅罕, 郝颖楠, 斯日古楞. 《2023 年美国胸科学会关于成人急性呼吸窘迫综合征患者管理的临床实践指南更新》解读[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 338-343.
[9] 刘婷, 杨少康, 陈亿霏, 刘悦, 潘纯. 气道闭合的监测在机械通气中的研究进展[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 394-398.
[10] 潘清, 葛慧青. 基于机械通气波形大数据的人机不同步自动监测方法[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 399-403.
[11] 杨东星, 沈鹏, 赵慧颖. 免疫球蛋白联合依库珠单抗治疗GBS 并发重度ARDS 患者一例[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 404-408.
[12] 刘春峰, 徐朝晖, 施红伟, 陈瑢, 马腾飞, 李鹏飞, 袁蓉, 陈建荣, 徐爱明. 机械通气患者肌肉减少症的诊断及其对预后的影响[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 820-825.
[13] 刘建, 王文珠, 王倩. 老年髋部骨折术后肺损伤现状调查分析及影响因素研究[J/OL]. 中华诊断学电子杂志, 2024, 12(04): 260-264.
[14] 刘晓鹏, 柳聪艳, 杨宁, 蔡琛, 李晓兵, 王红宇, 张思森. 三穴五针联合腹部提压法在机械通气患者肺康复中的疗效[J/OL]. 中华卫生应急电子杂志, 2024, 10(04): 193-198.
[15] 刘晴雯, 韩勇, 陈丽丹, 邓哲. 早期机械通气对成人院内心脏骤停病死率的影响:一项回顾性队列研究[J/OL]. 中华卫生应急电子杂志, 2024, 10(04): 203-206.
阅读次数
全文


摘要