切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2021, Vol. 07 ›› Issue (03) : 272 -276. doi: 10.3877/cma.j.issn.2096-1537.2021.03.014

综述

重型创伤性颅脑损伤患者自发性过度通气的研究进展
朱宁1, 苏芮1, 周建新1, 李宏亮1,()   
  1. 1. 100070 首都医科大学附属北京天坛医院重症医学科
  • 收稿日期:2021-03-16 出版日期:2021-08-28
  • 通信作者: 李宏亮
  • 基金资助:
    中华国际医学交流基金会中青年医学研究专项基金(Z-2018-35-2001)

Research progress of spontaneous hyperventilation in patients with severe traumatic brain injury

Ning Zhu1, Rui Su1, Jianxin Zhou1, Hongliang Li1,()   

  1. 1. Department of Intensive Care Unit, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
  • Received:2021-03-16 Published:2021-08-28
  • Corresponding author: Hongliang Li
引用本文:

朱宁, 苏芮, 周建新, 李宏亮. 重型创伤性颅脑损伤患者自发性过度通气的研究进展[J]. 中华重症医学电子杂志, 2021, 07(03): 272-276.

Ning Zhu, Rui Su, Jianxin Zhou, Hongliang Li. Research progress of spontaneous hyperventilation in patients with severe traumatic brain injury[J]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2021, 07(03): 272-276.

预防和减轻继发性脑损伤是重型创伤性颅脑损伤(sTBI)患者重症监护治疗过程中的重点和难点。诱导性过度通气(IHV)可通过减少脑血容量快速降低颅内压,但由于脑血管收缩带来的脑血流减少会加重脑组织的缺血缺氧,目前已不再推荐用于sTBI患者的常规治疗。与此同时,以不同程度的低碳酸血症为特征的自发性过度通气(SHV)在急性创伤性脑损伤患者中较为常见,且由于与患者的神经功能不良转归具有明显的相关性,近年来逐渐受到重视。本文从流行病学、病理生理学效应、临床预后及干预措施等角度对SHV在sTBI中的研究现状进行综述,以期提高重症医师的认知水平,进而重视并推动相关临床及基础研究的开展。

Secondary brain injury prevention is critical for the severe traumatic brain injury treatment. Induced hyperventilation can decrease intracranial pressure by reducing cerebral blood volume; however, it is not recommended as routine therapy in severe traumatic brain injury since the decreased cerebral blood flow which may aggravate brain ischemia. Meanwhile, a high prevalence of spontaneous hyperventilation in patients with an acute brain injury, which is characterized as certain degrees of hypocapnia, has attracted more attention in recent years due to closely related to the long-term adverse outcome. We has reviewed the epidemiology, pathophysiology mechanisms, clinical prognosis, and prevention methods of spontaneous hyperventilation in severe traumatic brain injury, aiming to improve the critical care physicians' awareness and facilitate fundamental and clinical research.

1
Stocchetti N, Carbonara M, Citerio G, et al. Severe traumatic brain injury: targeted management in the intensive care unit [J]. Lancet Neurol, 2017, 16(6): 452-464.
2
Curley G, Kavanagh BP, Laffey JG. Hypocapnia and the injured brain: more harm than benefit [J]. Crit Care Med, 2010, 38(5): 1348-1359.
3
Carney N, Totten AM, O'Reilly C, et al. Guidelines for the management of severe traumatic brain injury, fourth edition [J]. Neurosurgery, 2017, 80(1): 6-15.
4
Gouvea Bogossian E, Peluso L, Creteur J, et al. Hyperventilation in adult TBI patients: how to approach it? [J]. Front Neurol, 2020, 11: 580859.
5
Neumann JO, Chambers IR, Citerio G, et al. The use of hyperventilation therapy after traumatic brain injury in Europe: an analysis of the BrainIT database [J]. Intensive Care Med, 2008, 34(9): 1676-1682.
6
Esnault P, Roubin J, Cardinale M, et al. Spontaneous hyperventilation in severe traumatic brain injury: incidence and association with poor neurological outcome [J]. Neurocrit Care, 2019, 30(2): 405-413.
7
Rout MW, Lane DJ, Wollner L. Prognosis in acute cerebrovascular accidents in relation to respiratory pattern and blood gas tensions [J]. Br Med J, 1971, 3(5765): 7-9.
8
Carrera E, Schmidt JM, Fernandez L, et al. Spontaneous hyperventilation and brain tissue hypoxia in patients with severe brain injury [J]. J Neurol Neurosurg Psychiatry, 2010, 81(7): 793-797.
9
Hextrum S, Minhas JS, Liotta EM, et al. Hypocapnia, ischemic lesions, and outcomes after intracerebral hemorrhage [J]. J Neurol Sci, 2020, 418: 117-139.
10
Froman C, Smith AC. Hyperventilation associated with low pH of cerebrospinal fluid after intracranial haemorrhage [J]. Lancet, 1966, 1(7441): 780-782.
11
Lane DJ, Rout MW, Williamson DH. Mechanism of hyperventilation in acute cerebrovascular accidents [J]. Br Med J, 1971, 3(5765): 9-12.
12
Leusen I, Demeester G. Lactate and pyruvate in the brain of rats during hyperventilation [J]. Arch Int Physiol Biochim, 1966, 74(1): 25-34.
13
Mitchell RA, Loeschcke HH, Massion WH, et al. Respiratory responses mediated through superficial chemosensitive areas on the medulla [J]. J Appl Physiol, 1963, 18(3): 523-533.
14
Neves Briard J, Beaulieu MC, Lemoine É, et al. Central neurogenic hyperventilation in conscious patients due to CNS neoplasm: a case report and review of the literature on treatment [J]. Neurooncol Pract, 2020, 7(5): 559-568.
15
Caldwell HG, Howe CA, Chalifoux CJ, et al. Arterial carbon dioxide and bicarbonate rather than pH regulate cerebral blood flow in the setting of acute experimental metabolic alkalosis [J]. J Physiol, 2021, 599(5): 1439-1457.
16
Muizelaar JP, van der Poel HG, Li ZC, et al. Pial arteriolar vessel diameter and CO2 reactivity during prolonged hyperventilation in the rabbit [J]. J Neurosurg, 1988, 69(6): 923-927.
17
Kasprowicz M, Diedler J, Reinhard M, et al. Time constant of the cerebral arterial bed in normal subjects [J]. Ultrasound Med Biol, 2012, 38(7): 1129-1137.
18
Puppo C, Kasprowicz M, Steiner LA, et al. Hypocapnia after traumatic brain injury: how does it affect the time constant of the cerebral circulation? [J]. J Clin Monit Comput, 2020, 34(3): 461-468.
19
Godoy DA, Lubillo S, Rabinstein AA. Pathophysiology and management of intracranial hypertension and tissular brain hypoxia after severe traumatic brain injury: an integrative approach [J]. Neurosurg Clin N Am, 2018, 29(2): 195-212.
20
Steiner LA, Balestreri M, Johnston AJ, et al. Effects of moderate hyperventilation on cerebrovascular pressure-reactivity after head injury [J]. Acta Neurochir Suppl, 2005, 95: 17-20.
21
Minhas JS, Panerai RB, Robinson TG. Modelling the cerebral haemodynamic response in the physiological range of PaCO2 [J]. Physiol Meas, 2018, 39(6): 065001.
22
Godoy DA, Badenes R, Robba C, et al. Hyperventilation in severe traumatic brain injury has something changed in the last decade or uncertainty continues? a brief review [J]. Front Neurol, 2021, 12: 573237.
23
Godoy DA, Rovegno M, Lazaridis C, et al. The effects of arterial CO2 on the injured brain: Two faces of the same coin [J]. J Crit Care, 2021, 61: 207-215.
24
Fortune JB, Feustel PJ, deLuna C, et al. Cerebral blood flow and blood volume in response to O2 and CO2 changes in normal humans [J]. J Trauma, 1995, 39(3): 463-471.
25
Meng L, Gelb AW. Regulation of cerebral autoregulation by carbon dioxide [J]. Anesthesiology, 2015, 122(1): 196-205.
26
Gelb AW, Craen RA, Rao GS, et al. Does hyperventilation improve operating condition during supratentorial craniotomy? A multicenter randomized crossover trial [J]. Anesth Analg, 2008, 106(2): 585-594.
27
Harrington T, Di Chiro G. Effect of hypocarbia and hypercarbia in experimental brain infarction: a microangiographic study in the monkey [J]. Neurology, 1973, 23(3): 294-299.
28
Minhas JS, Panerai RB, Swienton D, et al. Feasibility of improving cerebral autoregulation in acute intracerebral hemorrhage (BREATHE-ICH) study: Results from an experimental interventional study [J]. Int J Stroke, 2020, 15(6): 627-637.
29
Laffey JG, Kavanagh BP. Hypocapnia [J]. N Engl J Med, 2002, 347(1): 43-53.
30
Coles JP, Minhas PS, Fryer TD, et al. Effect of hyperventilation on cerebral blood flow in traumatic head injury: clinical relevance and monitoring correlates [J]. Crit Care Med, 2002, 30(9): 1950-1959.
31
Okonkwo DO, Shutter LA, Moore C, et al. Brain oxygen optimization in severe traumatic brain injury phase-Ⅱ: a phase ii randomized trial [J]. Crit Care Med, 2017, 45(11): 1907-1914.
32
Marion DW, Puccio A, Wisniewski SR, et al. Effect of hyperventilation on extracellular concentrations of glutamate, lactate, pyruvate, and local cerebral blood flow in patients with severe traumatic brain injury [J]. Crit Care Med, 2002, 30(12): 2619-2625.
33
Svedung Wettervik T, Howells T, Hillered L, et al. Mild hyperventilation in traumatic brain injury-relation to cerebral energy metabolism, pressure autoregulation, and clinical outcome [J]. World Neurosurg, 2020, 133: e567-e575.
34
Brandi G, Stocchetti N, Pagnamenta A, et al. Cerebral metabolism is not affected by moderate hyperventilation in patients with traumatic brain injury [J]. Crit Care, 2019, 23(1): 45.
35
Coles JP, Fryer TD, Coleman MR, et al. Hyperventilation following head injury: effect on ischemic burden and cerebral oxidative metabolism [J]. Crit Care Med, 2007, 35(2): 568-578.
36
Muizelaar JP, Marmarou A, Ward JD, et al. Adverse effects of prolonged hyperventilation in patients with severe head injury: a randomized clinical trial [J]. J Neurosurg, 1991, 75(5): 731-739.
37
Warner KJ, Cuschieri J, Copass MK, et al. The impact of prehospital ventilation on outcome after severe traumatic brain injury [J]. J Trauma, 2007, 62(6): 1330-1336.
38
Sweidan AJ, Bower MM, Paullus J, et al. Refractory central neurogenic hyperventilation: a novel approach utilizing mechanical dead space [J]. Front Neurol, 2019, 10: 937.
39
Jones GM, Wiss AL, Goyal N, et al. Successful use of Ketamine for central neurogenic hyperventilation: a case report [J]. Neurohospitalist, 2017, 7(4): 192-195.
40
Adachi YU, Sano H, Doi M, et al. Central neurogenic hyperventilation treated with intravenous fentanyl followed by transdermal application [J]. J Anesth, 2007, 21(3): 417-419.
41
Haddad SH, Arabi YM. Critical care management of severe traumatic brain injury in adults [J]. Scand J Trauma Resusc Emerg Med, 2012, 20: 12.
42
Costa R, Navalesi P, Cammarota G, et al. Remifentanil effects on respiratory drive and timing during pressure support ventilation and neurally adjusted ventilatory assist [J]. Respir Physiol Neurobiol, 2017, 244: 10-16.
43
Engelhard K, Reeker W, Kochs E, et al. Effect of remifentanil on intracranial pressure and cerebral blood flow velocity in patients with head trauma [J]. Acta Anaesthesiol Scand, 2004, 48(4): 396-399.
[1] 杨忠, 邓学东, 姜纬, 殷林亮, 潘琦, 梁泓, 马建芳, 苟中山, 王珍琦. 三维能量多普勒及彩色多普勒超声评估先天性心脏病胎儿脑血流灌注的研究[J]. 中华医学超声杂志(电子版), 2020, 17(09): 874-879.
[2] 何鑫, 贺亚龙, 武秀权, 吴霜, 郇宇, 王凯, 杜伟, 费舟, 李侠. 成年重型颅脑损伤后加重继发性脑损伤的危险因素分析[J]. 中华神经创伤外科电子杂志, 2021, 07(03): 132-136.
[3] 费舟. 强化多模态监测加重继发性脑损伤的危险因素[J]. 中华神经创伤外科电子杂志, 2021, 07(03): 129-131.
[4] 张丽娜, 蒋渊, 艾宇航. 重症神经系统疾病患者救治:保护为先[J]. 中华重症医学电子杂志, 2020, 06(03): 241-243.
[5] 王姗姗, 徐小汝, 史振仙, 张德杰. 丹参多酚酸联合尤瑞克林治疗急性分水岭脑梗死的疗效及对认知功能、脑血流动力学和血清LPA、ox-LDL、MMP-9水平的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(03): 142-149.
[6] 胡飞龙, 路璐. 胞磷胆碱对大脑中动脉缺血性脑卒中恢复期的疗效[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(01): 51-56.
[7] 张志强, 王振方, 王海峰, 李飞, 丁柏匀, 代秋声, 徐如祥. 16排移动CT脑灌注成像的初步结果报告[J]. 中华脑科疾病与康复杂志(电子版), 2018, 08(01): 29-32.
[8] 王卓慧, 武志佳, 胡婷. 针刺对缺血性卒中脑血流量干预机制的研究现状[J]. 中华针灸电子杂志, 2020, 09(03): 99-101.
[9] 岑颖欣, 张思森, 汪宏伟, 刘婷, 赵龙现, 张存庆, 李静, 王立祥. TCD联合APACHEⅡ评分在腹部心肺复苏脑功能预后中的价值[J]. 中华卫生应急电子杂志, 2018, 04(01): 21-25.
[10] 丁江波, 汤志伟. 烟雾病患者脑血流动力学的研究进展[J]. 中华脑血管病杂志(电子版), 2022, 16(06): 432-438.
[11] 周英奕, 时晶, 魏明清, 倪敬年, 李婷, 张立苹, 谭中建, 田金洲. 基于动脉自旋磁共振技术探讨阿尔茨海默病脑血流特点与认知功能的关系[J]. 中华脑血管病杂志(电子版), 2021, 15(05): 302-307.
[12] 赵黎明, 梁浩, 张韶, 高涛, 刘阳, 孙玉学, 郭高超, 李天晓, 栗超跃. 不稳定型烟雾病患者的临床特征及其发生的危险因素分析[J]. 中华脑血管病杂志(电子版), 2021, 15(02): 83-87.
[13] 吴金秀, 李青, 王超伟, 徐志秀, 赵盼盼, 张黎军, 袁彬, 赵建华, 吉四辈. 丁苯酞对急性脑梗死患者脑血流灌注及神经功能的影响[J]. 中华脑血管病杂志(电子版), 2020, 14(04): 221-225.
[14] 张勇跃, 马惠德, 崔立刚, 王淑敏. 基于脑血流的功能成像技术在缺血性脑卒中诊疗中的研究进展[J]. 中华脑血管病杂志(电子版), 2020, 14(03): 140-144.
阅读次数
全文


摘要