切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2021, Vol. 07 ›› Issue (03): 268 -271. doi: 10.3877/cma.j.issn.2096-1537.2021.03.013

综述 上一篇    下一篇

ARDS中肺泡巨噬细胞自噬对肺损伤调节作用的研究进展
董学程 1, 刘玲 1 , ( )   
  1. 1. 210009 南京,江苏省重症医学重点实验室 东南大学附属中大医院重症医学科
  • 收稿日期:2021-04-13 出版日期:2021-08-28
  • 通信作者: 刘玲
  • 基金资助:
    国家自然科学基金面上项目(81870066,81670074); 重大新药创制科技重大专项(2020ZX09201015); 江苏省自然科学面上项目(BK20181271); 江苏省第五期“333高层次人才培养工程”第三层次人才(LGY2016051); 江苏省青年医学人才(QNRC2016807); 江苏省第十五期六大高升人才(B类,2018年)

Research update on the regulatory effects of alveolar macrophage autophagy on lung injury in acute respiratory distress syndrome

Xuecheng Dong 1, Ling Liu 1 , ( )   

  1. 1. Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
  • Received:2021-04-13 Published:2021-08-28
  • Corresponding author: Ling Liu

失控的炎症反应是急性呼吸窘迫综合征(ARDS)发生发展的关键环节,而肺泡巨噬细胞自噬在ARDS的炎症反应中发挥重要的调节作用。本文对相关文献进行回顾,以深入了解在ARDS中肺泡巨噬细胞发生自噬的具体机制及肺泡巨噬细胞自噬对肺损伤的影响,为ARDS的治疗提供进一步的研究方向。

Uncontrolled inflammation is the fundament of the pathogenesis of acute respiratory distress syndrome (ARDS) and most researches show that autophagy of alveolar macrophages plays an important regulatory role in the inflammation of ARDS. This review focuses on the mechanism of alveolar macrophage autophagy in ARDS,states the influence of alveolar macrophage autophagy in lung injury, and provides research directions in the treatment of ARDS.

1
Johnston LK, Rims CR, Gill SE, et al. Pulmonary macrophage subpopulations in the induction and resolution of acute lung injury [J]. Am J Respir Cell Mol Biol, 2012, 47(4): 417-426.
2
Lomas-Neira J, Chung CS, Perl M, et al. Role of alveolar macrophage and migrating neutrophils in hemorrhage-induced priming for ALI subsequent to septic challenge [J]. Am J Physiol Lung Cell Mol Physiol, 2006, 290(1): L51-58.
3
Lupfer C, Thomas PG, Anand PK, et al. Receptor interacting protein kinase 2-mediated mitophagy regulates inflammasome activation during virus infection [J]. Nat Immunol, 2013, 14(5): 480-488.
4
Ravindran R, Loebbermann J, Nakaya HI, et al. The amino acid sensor GCN2 controls gut inflammation by inhibiting inflammasome activation [J]. Nature, 2016, 531(7595): 523-527.
5
Kanayama M, He YW, Shinohara ML. The lung is protected from spontaneous inflammation by autophagy in myeloid cells [J]. J Immunol, 2015, 194(11): 5465-5471.
6
Tang D, Kang R, Coyne CB, et al. PAMPs and DAMPs: signal 0s that spur autophagy and immunity [J]. Immunol Rev, 2012, 249(1): 158-175.
7
Liu X, Cao H, Li J, et al. Autophagy induced by DAMPs facilitates the inflammation response in lungs undergoing ischemia-reperfusion injury through promoting TRAF6 ubiquitination [J]. Cell Death Differ, 2017, 24(4): 683-693.
8
Mukherjee T, Hovingh ES, Foerster EG, et al. NOD1 and NOD2 in inflammation, immunity and disease [J]. Arch Biochem Biophys, 2019, 670: 69-81.
9
Wen Z, Fan L, Li Y, et al. Neutrophils counteract autophagy-mediated anti-inflammatory mechanisms in alveolar macrophage: role in posthemorrhagic shock acute lung inflammation [J]. J Immunol, 2014, 193(9): 4623-4633.
10
Hu R, Chen ZF, Yan J, et al. Complement C5a exacerbates acute lung injury induced through autophagy-mediated alveolar macrophage apoptosis [J]. Cell Death Dis, 2014, 5: e1330.
11
Liu F, Nie C, Zhao N, et al. MiR-155 alleviates septic lung injury by inducing autophagy via inhibition of transforming growth factor-beta-activated binding protein 2 [J]. Shock, 2017, 48(1): 61-68.
12
Akman M, Belisario DC, Salaroglio IC, et al. Hypoxia, endoplasmic reticulum stress and chemoresistance: dangerous liaisons [J]. J Exp Clin Cancer Res, 2021, 40(1): 28.
13
Fan T, Huang Z, Wang W, et al. Proteasome inhibition promotes autophagy and protects from endoplasmic reticulum stress in rat alveolar macrophages exposed to hypoxia-reoxygenation injury [J]. J Cell Physiol, 2018, 233(10): 6748-6758.
14
Ogura Y, Inohara N, Benito A, et al. Nod2, a Nod1/Apaf-1 family member that is restricted to monocytes and activates NF-kappaB [J]. J Biol Chem, 2001, 276(7): 4812-4818.
15
Inohara N, Koseki T, Lin J, et al. An induced proximity model for NF-kappa B activation in the Nod1/RICK and RIP signaling pathways [J]. J Biol Chem, 2000, 275(36): 27823-27831.
16
Lécine P, Esmiol S, Métais JY, et al. The NOD2-RICK complex signals from the plasma membrane [J]. J Biol Chem, 2007, 282(20): 15197-15207.
17
Inohara N, Nuñez G. NODs: intracellular proteins involved in inflammation and apoptosis [J]. Nat Rev Immunol, 2003, 3(5): 371-382.
18
Lamkanfi M, Dixit VM. Mechanisms and functions of inflammasomes [J]. Cell, 2014, 157(5): 1013-1022.
19
Jo EK, Kim JK, Shin DM, et al. Molecular mechanisms regulating NLRP3 inflammasome activation [J]. Cell Mol Immunol, 2016, 13(2): 148-159.
20
Jia X, Cao B, An Y, et al. Rapamycin ameliorates lipopolysaccharide-induced acute lung injury by inhibiting IL-1 beta and IL-18 production [J]. International Immunopharmacology, 2019, 67: 211-219.
21
Bhoj VG, Chen ZJ. Ubiquitylation in innate and adaptive immunity [J]. Nature, 2009, 458(7237): 430-437.
22
Park JS, Svetkauskaite D, He Q, et al. Involvement of toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein [J]. J Biol Chem, 2004, 279(9): 7370-7377.
23
Liu AP, Yuan QH, Zhang B, et al. Cannabinoid receptor 2 activation alleviates septic lung injury by promoting autophagy via inhibition of inflammatory mediator release [J]. Cell Signal, 2020, 69: 109556.
24
Qian Q, Cao X, Wang B, et al. Endoplasmic reticulum stress potentiates the autophagy of alveolar macrophage to attenuate acute lung injury and airway inflammation [J]. Cell Cycle, 2020, 19(5): 567-576.
25
Liu H, Zhou K, Liao L, et al. Lipoxin A4 receptor agonist BML-111 induces autophagy in alveolar macrophages and protects from acute lung injury by activating MAPK signaling [J]. Respir Res, 2018, 19(1): 243.
[1] 刘盼盼, 王燕, 周银超, 董绉绉. 早期膈肌萎缩对急性呼吸窘迫综合征机械通气患者撤机结局的影响研究[J]. 中华危重症医学杂志(电子版), 2022, 15(01): 36-41.
[2] 宗立永, 刘爱敏, 丁士芳, 吴大玮, 李琛, 翟茜, 杜滨锋, 李远. 血管外肺水含量变化与急性呼吸窘迫综合征患者预后的临床研究[J]. 中华危重症医学杂志(电子版), 2021, 14(05): 380-385.
[3] 邬文莉, 卢志远, 黎凡, 王洪涛, 郝建锁, 高梓君, 陈亦阳. 雷帕霉素通过促进细胞自噬抑制大鼠血管平滑肌细胞增殖活性效应[J]. 中华口腔医学研究杂志(电子版), 2022, 16(01): 12-20.
[4] 赵云峰, 徐志华, 巫梦娜, 顾维立. 血清miR-133a在脓毒症并发ARDS中表达及预后的关系[J]. 中华肺部疾病杂志(电子版), 2022, 15(01): 38-41.
[5] 李岳航, 赵敏. 血清sTREM-1、suPAR在创伤相关ARDS中的研究进展[J]. 中华肺部疾病杂志(电子版), 2022, 15(01): 116-118.
[6] 凡华, 张国新, 李庚. MicroRNA-155联合MicroRNA-127对急性呼吸窘迫综合征预后的意义[J]. 中华肺部疾病杂志(电子版), 2021, 14(06): 760-763.
[7] 秦丽, 林江, 陈代刚, 江洪艳, 金妮, 黄毅. 库欣综合征合并致命性多机会感染一例[J]. 中华肺部疾病杂志(电子版), 2021, 14(06): 843-844.
[8] 赵和萌, 李晓娜, 黄圆美, 周进进, 王娟. 肺泡死腔分数与急性呼吸窘迫综合征患儿预后分析[J]. 中华肺部疾病杂志(电子版), 2021, 14(05): 620-622.
[9] 许发琼, 贺斌峰, 黄朝旺, 胡明冬. 非编码RNA调控巨噬细胞炎症反应在ALI/ARDS中的研究进展[J]. 中华肺部疾病杂志(电子版), 2021, 14(05): 677-680.
[10] 王书缘, 袁震, 王德坤, 谭小月. 自噬在糖尿病肾病发病及治疗中的作用与机理[J]. 中华肾病研究电子杂志, 2021, 10(06): 347-351.
[11] 鲁卫华, 王涛, 秦雪梅, 徐前程, 姜小敢. 早期清醒俯卧位联合经鼻高流量氧疗治疗重型新型冠状病毒肺炎一例[J]. 中华重症医学电子杂志, 2022, 08(01): 85-89.
[12] 周润奭, 隆云, 李尊柱, 李奇, 韩伟, 袁思依, 杨玉洁. EIT监测ARDS脱机困难患者早期活动过程中肺部通气变化[J]. 中华重症医学电子杂志, 2021, 07(04): 319-325.
[13] 张莹, 岳伟岗, 蒋由飞, 袁鹏, 尹瑞元, 冯鑫, 张志刚, 田金徽, 李斌. 气道压力释放通气对ARDS患者有效性的Meta分析与试验序贯分析[J]. 中华重症医学电子杂志, 2021, 07(04): 339-346.
[14] 吴旻杭, 曹莉莉. 细胞自噬在肝癌进展中的作用[J]. 中华消化病与影像杂志(电子版), 2021, 11(05): 222-225.
[15] 中国研究型医院学会危重医学专业委员会, 中国医药教育协会重症医学专业委员会. 西维来司他钠临床应用专家共识(2022)[J]. 中华卫生应急电子杂志, 2022, 08(01): 1-5.
阅读次数
全文


摘要