切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2021, Vol. 07 ›› Issue (03) : 268 -271. doi: 10.3877/cma.j.issn.2096-1537.2021.03.013

综述

ARDS中肺泡巨噬细胞自噬对肺损伤调节作用的研究进展
董学程1, 刘玲1,()   
  1. 1. 210009 南京,江苏省重症医学重点实验室 东南大学附属中大医院重症医学科
  • 收稿日期:2021-04-13 出版日期:2021-08-28
  • 通信作者: 刘玲
  • 基金资助:
    国家自然科学基金面上项目(81870066,81670074); 重大新药创制科技重大专项(2020ZX09201015); 江苏省自然科学面上项目(BK20181271); 江苏省第五期“333高层次人才培养工程”第三层次人才(LGY2016051); 江苏省青年医学人才(QNRC2016807); 江苏省第十五期六大高升人才(B类,2018年)

Research update on the regulatory effects of alveolar macrophage autophagy on lung injury in acute respiratory distress syndrome

Xuecheng Dong1, Ling Liu1,()   

  1. 1. Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
  • Received:2021-04-13 Published:2021-08-28
  • Corresponding author: Ling Liu
引用本文:

董学程, 刘玲. ARDS中肺泡巨噬细胞自噬对肺损伤调节作用的研究进展[J/OL]. 中华重症医学电子杂志, 2021, 07(03): 268-271.

Xuecheng Dong, Ling Liu. Research update on the regulatory effects of alveolar macrophage autophagy on lung injury in acute respiratory distress syndrome[J/OL]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2021, 07(03): 268-271.

失控的炎症反应是急性呼吸窘迫综合征(ARDS)发生发展的关键环节,而肺泡巨噬细胞自噬在ARDS的炎症反应中发挥重要的调节作用。本文对相关文献进行回顾,以深入了解在ARDS中肺泡巨噬细胞发生自噬的具体机制及肺泡巨噬细胞自噬对肺损伤的影响,为ARDS的治疗提供进一步的研究方向。

Uncontrolled inflammation is the fundament of the pathogenesis of acute respiratory distress syndrome (ARDS) and most researches show that autophagy of alveolar macrophages plays an important regulatory role in the inflammation of ARDS. This review focuses on the mechanism of alveolar macrophage autophagy in ARDS,states the influence of alveolar macrophage autophagy in lung injury, and provides research directions in the treatment of ARDS.

1
Johnston LK, Rims CR, Gill SE, et al. Pulmonary macrophage subpopulations in the induction and resolution of acute lung injury [J]. Am J Respir Cell Mol Biol, 2012, 47(4): 417-426.
2
Lomas-Neira J, Chung CS, Perl M, et al. Role of alveolar macrophage and migrating neutrophils in hemorrhage-induced priming for ALI subsequent to septic challenge [J]. Am J Physiol Lung Cell Mol Physiol, 2006, 290(1): L51-58.
3
Lupfer C, Thomas PG, Anand PK, et al. Receptor interacting protein kinase 2-mediated mitophagy regulates inflammasome activation during virus infection [J]. Nat Immunol, 2013, 14(5): 480-488.
4
Ravindran R, Loebbermann J, Nakaya HI, et al. The amino acid sensor GCN2 controls gut inflammation by inhibiting inflammasome activation [J]. Nature, 2016, 531(7595): 523-527.
5
Kanayama M, He YW, Shinohara ML. The lung is protected from spontaneous inflammation by autophagy in myeloid cells [J]. J Immunol, 2015, 194(11): 5465-5471.
6
Tang D, Kang R, Coyne CB, et al. PAMPs and DAMPs: signal 0s that spur autophagy and immunity [J]. Immunol Rev, 2012, 249(1): 158-175.
7
Liu X, Cao H, Li J, et al. Autophagy induced by DAMPs facilitates the inflammation response in lungs undergoing ischemia-reperfusion injury through promoting TRAF6 ubiquitination [J]. Cell Death Differ, 2017, 24(4): 683-693.
8
Mukherjee T, Hovingh ES, Foerster EG, et al. NOD1 and NOD2 in inflammation, immunity and disease [J]. Arch Biochem Biophys, 2019, 670: 69-81.
9
Wen Z, Fan L, Li Y, et al. Neutrophils counteract autophagy-mediated anti-inflammatory mechanisms in alveolar macrophage: role in posthemorrhagic shock acute lung inflammation [J]. J Immunol, 2014, 193(9): 4623-4633.
10
Hu R, Chen ZF, Yan J, et al. Complement C5a exacerbates acute lung injury induced through autophagy-mediated alveolar macrophage apoptosis [J]. Cell Death Dis, 2014, 5: e1330.
11
Liu F, Nie C, Zhao N, et al. MiR-155 alleviates septic lung injury by inducing autophagy via inhibition of transforming growth factor-beta-activated binding protein 2 [J]. Shock, 2017, 48(1): 61-68.
12
Akman M, Belisario DC, Salaroglio IC, et al. Hypoxia, endoplasmic reticulum stress and chemoresistance: dangerous liaisons [J]. J Exp Clin Cancer Res, 2021, 40(1): 28.
13
Fan T, Huang Z, Wang W, et al. Proteasome inhibition promotes autophagy and protects from endoplasmic reticulum stress in rat alveolar macrophages exposed to hypoxia-reoxygenation injury [J]. J Cell Physiol, 2018, 233(10): 6748-6758.
14
Ogura Y, Inohara N, Benito A, et al. Nod2, a Nod1/Apaf-1 family member that is restricted to monocytes and activates NF-kappaB [J]. J Biol Chem, 2001, 276(7): 4812-4818.
15
Inohara N, Koseki T, Lin J, et al. An induced proximity model for NF-kappa B activation in the Nod1/RICK and RIP signaling pathways [J]. J Biol Chem, 2000, 275(36): 27823-27831.
16
Lécine P, Esmiol S, Métais JY, et al. The NOD2-RICK complex signals from the plasma membrane [J]. J Biol Chem, 2007, 282(20): 15197-15207.
17
Inohara N, Nuñez G. NODs: intracellular proteins involved in inflammation and apoptosis [J]. Nat Rev Immunol, 2003, 3(5): 371-382.
18
Lamkanfi M, Dixit VM. Mechanisms and functions of inflammasomes [J]. Cell, 2014, 157(5): 1013-1022.
19
Jo EK, Kim JK, Shin DM, et al. Molecular mechanisms regulating NLRP3 inflammasome activation [J]. Cell Mol Immunol, 2016, 13(2): 148-159.
20
Jia X, Cao B, An Y, et al. Rapamycin ameliorates lipopolysaccharide-induced acute lung injury by inhibiting IL-1 beta and IL-18 production [J]. International Immunopharmacology, 2019, 67: 211-219.
21
Bhoj VG, Chen ZJ. Ubiquitylation in innate and adaptive immunity [J]. Nature, 2009, 458(7237): 430-437.
22
Park JS, Svetkauskaite D, He Q, et al. Involvement of toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein [J]. J Biol Chem, 2004, 279(9): 7370-7377.
23
Liu AP, Yuan QH, Zhang B, et al. Cannabinoid receptor 2 activation alleviates septic lung injury by promoting autophagy via inhibition of inflammatory mediator release [J]. Cell Signal, 2020, 69: 109556.
24
Qian Q, Cao X, Wang B, et al. Endoplasmic reticulum stress potentiates the autophagy of alveolar macrophage to attenuate acute lung injury and airway inflammation [J]. Cell Cycle, 2020, 19(5): 567-576.
25
Liu H, Zhou K, Liao L, et al. Lipoxin A4 receptor agonist BML-111 induces autophagy in alveolar macrophages and protects from acute lung injury by activating MAPK signaling [J]. Respir Res, 2018, 19(1): 243.
[1] 江雅婷, 刘林峰, 沈辰曦, 陈奔, 刘婷, 龚裕强. 组织相关巨噬素3 保护肺血管内皮糖萼治疗急性呼吸窘迫综合征的机制研究[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(05): 353-362.
[2] 吴杰, 周志强, 符菁, 李喜功, 张钦. 吸入性氢气对大鼠脊髓损伤后自噬及神经功能的影响[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(05): 363-371.
[3] 李振翮, 魏长青, 甄国栋, 李振富. 脓毒症并发急性呼吸窘迫综合征患者血清S1P、Wnt5a变化及其临床意义[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 293-300.
[4] 许彬, 王丽, 陈瑞, 沈奕, 陆件. 瞬时受体电位粘脂素1介导细胞自噬在远端缺血后处理保护大鼠脑缺血-再灌注损伤中的作用研究[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(03): 180-187.
[5] 杨茂宪, 沈鹏, 王倩倩, 吴旺, 沈永帅, 蒋禛, 徐龙生, 朱建刚, 刘倍倍. 吡啶甲酸镁联合地塞米松对急性呼吸窘迫综合征大鼠的治疗作用研究[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(03): 196-203.
[6] 李争光, 宰爽嘉, 吴火峰, 孙华, 张永博, 陈浏阳, 戴睿, 张亮. 昼夜节律相关因子在椎间盘退行性变发病机制中作用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 457-461.
[7] 李智, 冯芸. NF-κB 与MAPK 信号通路及其潜在治疗靶点在急性呼吸窘迫综合征中的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 840-843.
[8] 王晓霞, 乌丹, 张江英, 乌雅罕, 郝颖楠, 斯日古楞. 《2023 年美国胸科学会关于成人急性呼吸窘迫综合征患者管理的临床实践指南更新》解读[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 338-343.
[9] 杨东星, 沈鹏, 赵慧颖. 免疫球蛋白联合依库珠单抗治疗GBS 并发重度ARDS 患者一例[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 404-408.
[10] 倪韫晖, 杨毅, 袁雪燕, 邱海波. 胸壁加压在急性呼吸窘迫综合征中的应用和临床进展[J/OL]. 中华重症医学电子杂志, 2024, 10(03): 243-247.
[11] 杨永红, 杨莹, 齐红蕾, 刘福瑞, 朱金源. 单细胞测序在急性呼吸窘迫综合征中的应用进展[J/OL]. 中华重症医学电子杂志, 2024, 10(03): 248-252.
[12] 李松栗, 黄蔚, 巢杰, 杨毅, 邱海波. 单核/巨噬细胞来源的细胞外囊泡在急性呼吸窘迫综合征中的研究进展[J/OL]. 中华重症医学电子杂志, 2024, 10(03): 253-257.
[13] 田学, 谢晖, 王瑞兰. 急性呼吸窘迫综合征相关肺纤维化的研究进展[J/OL]. 中华重症医学电子杂志, 2024, 10(03): 258-264.
[14] 史清泉, 苗彬, 王烁, 陶琳, 沈晨. miR-181a-5p 靶向ATG5 抑制雨蛙素诱导的大鼠胰腺腺泡细胞AR42J自噬的机制研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 524-530.
[15] 刘霖, 张文欢, 宋雅茹, 姜云璐. Apelin-13 在阿尔茨海默病中的神经保护作用机制研究进展[J/OL]. 中华诊断学电子杂志, 2024, 12(04): 276-280.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?