1 |
Rhee C, Dantes R, Epstein L, et al. Incidence and trends of sepsis in US hospitals using clinical vs claims data, 2009-2014 [J]. JAMA, 2017, 318(13): 1241-1249.
|
2 |
Fleischmann C, Scherag A, Adhikari NK, et al. Assessment of global incidence and mortality of hospital-treated sepsis. Current estimates and limitations [J]. Am J Respir Crit Care Med, 2016, 193(3): 259-272.
|
3 |
Rudd KE, Johnson SC, Agesa KM, et al. Global, regional, and national sepsis incidence and mortality, 1990-2017: analysis for the Global Burden of Disease Study [J]. Lancet, 2020, 395(10219): 200-211.
|
4 |
Xie J, Wang H, Kang Y, et al; CHinese Epidemiological Study of Sepsis (CHESS) Study Investigators. The epidemiology of sepsis in Chinese ICUs: a national cross-sectional survey [J]. Crit Care Med, 2020, 48(3): e209-e218.
|
5 |
Singer M, Deutschman CS, Seymour CW, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) [J]. JAMA, 2016, 315(8): 801-810.
|
6 |
Seymour CW, Gomez H, Chang CH, et al. Precision medicine for all? Challenges and opportunities for a precision medicine approach to critical illness [J]. Crit Care, 2017, 21(1): 257.
|
7 |
Vincent JL. The coming era of precision medicine for intensive care [J]. Crit Care, 2017, 21(Suppl 3): 314.
|
8 |
Davenport EE, Burnham KL, Radhakrishnan J, et al. Genomic landscape of the individual host response and outcomes in sepsis: a prospective cohort study [J]. Lancet Respir Med, 2016, 4(4): 259-271.
|
9 |
Scicluna BP, van Vught LA, Zwinderman AH, et al. Classification of patients with sepsis according to blood genomic endotype: a prospective cohort study [J]. Lancet Respir Med, 2017, 5(10): 816-826.
|
10 |
Wong HR, Cvijanovich NZ, Anas N, et al. Developing a clinically feasible personalized medicine approach to pediatric septic shock [J]. Am J Respir Crit Care Med, 2015, 191(3): 309-315.
|
11 |
Zhang Z, Pan Q, Ge H, et al. Deep learning-based clustering robustly identified two classes of sepsis with both prognostic and predictive values [J]. EBioMedicine, 2020, 62: 103081.
|
12 |
Sweeney TE, Azad TD, Donato M, et al. Unsupervised analysis of transcriptomics in bacterial sepsis across multiple datasets reveals three robust clusters [J]. Crit Care Med, 2018, 46(6): 915-925.
|
13 |
Antcliffe DB, Burnham KL, Al-Beidh F, et al. Transcriptomic signatures in sepsis and a differential response to steroids. From the VANISH randomized trial [J]. Am J Respir Crit Care Med, 2019, 199(8): 980-986.
|
14 |
Wong HR, Sweeney TE, Hart KW, et al. Pediatric sepsis endotypes among adults with sepsis [J]. Crit Care Med, 2017, 45(12): e1289-e1291.
|
15 |
Calfee CS, Delucchi K, Parsons PE, et al. Subphenotypes in acute respiratory distress syndrome: latent class analysis of data from two randomised controlled trials [J]. Lancet Respir Med, 2014, 2(8): 611-620.
|
16 |
Calfee CS, Delucchi KL, Sinha P, et al. Acute respiratory distress syndrome subphenotypes and differential response to simvastatin: secondary analysis of a randomised controlled trial [J]. Lancet Respir Med, 2018, 6(9): 691-698.
|
17 |
Sinha P, Delucchi KL, Thompson BT, et al. Latent class analysis of ARDS subphenotypes: a secondary analysis of the statins for acutely injured lungs from sepsis (SAILS) study [J]. Intensive Care Med, 2018, 44(11): 1859-1869.
|
18 |
Sinha P, Churpek MM, Calfee CS. Machine learning classifier models can identify acute respiratory distress syndrome phenotypes using readily available clinical data [J]. Am J Respir Crit Care Med, 2020, 202(7): 996-1004.
|
19 |
Zhao H, Kennedy JN, Wang S, et al. Revising host phenotypes of sepsis using microbiology [J]. Front Med (Lausanne), 2021, 8: 775511.
|
20 |
Famous KR, Delucchi K, Ware LB, et al. Acute respiratory distress syndrome subphenotypes respond differently to randomized fluid management strategy [J]. Am J Respir Crit Care Med, 2017, 195(3): 331-338.
|
21 |
Seymour CW, Kennedy JN, Wang S, et al. Derivation, validation, and potential treatment implications of novel clinical phenotypes for sepsis [J]. JAMA, 2019, 321(20): 2003-2017.
|
22 |
Knaus WA, Marks RD. New phenotypes for sepsis: the promise and problem of applying machine learning and artificial intelligence in clinical research [J]. JAMA, 2019, 321(20): 1981-1982.
|
23 |
Zhang Z, Zhang G, Goyal H, et al. Identification of subclasses of sepsis that showed different clinical outcomes and responses to amount of fluid resuscitation: a latent profile analysis [J]. Crit Care, 2018, 22(1): 347.
|
24 |
Hasegawa D, Nishida O. Patient selection in sepsis: precision medicine using phenotypes and its implications for future clinical trial design [J]. J Thorac Dis, 2019, 11(9): 3672-3675.
|
25 |
Moser J, van Meurs M, Zijlstra JG. Identifying sepsis phenotypes [J]. JAMA, 2019, 322(14): 1416.
|
26 |
Moseley PL, Brunak S. Identifying sepsis phenotypes [J]. JAMA, 2019, 322(14): 1416-1417.
|
27 |
Ma P, Liu J, Shen F, et al. Individualized resuscitation strategy for septic shock formalized by finite mixture modeling and dynamic treatment regimen [J]. Crit Care, 2021, 25(1): 243.
|