1 |
Rudd KE, Johnson SC, Agesa KM, et al. Global, regional, and national sepsis incidence and mortality, 1990-2017: analysis for the Global Burden of Disease Study [J]. Lancet, 2020, 395(10219): 200-211.
|
2 |
Xie J, Wang H, Kang Y, et al. The Epidemiology of Sepsis in Chinese ICUs: A National Cross-Sectional Survey [J]. Crit Care Med, 2020, 48(3): e209-e218.
|
3 |
Iba T, Levy JH. Sepsis-induced coagulopathy and disseminated intravascular coagulation [J]. Anesthesiology, 2020, 132(5):1238-1245.
|
4 |
Iba T, Umemura Y, Wada H, et al. Roles of coagulation abnormalities and microthrombosis in sepsis: pathophysiology, diagnosis, and treatment [J]. Arch Med Res, 2021, 52(8): 788-797.
|
5 |
Kuroda H, Tatsumi H, Sonoda T, et al. A suggested link between antithrombin dose and rate of recovery from disseminated intravascular coagulation in patients with severe organ failure [J]. Clin Appl Thromb Hemost, 2022, 28: 10760296221080942.
|
6 |
Chen R, Kang R, Tang D. The mechanism of HMGB1 secretion and release [J]. Exp Mol Med, 2022, 54(2): 91-102.
|
7 |
Andersson U, Tracey KJ, Yang H. Post-translational modification of HMGB1 disulfide bonds in stimulating and inhibiting inflammation [J]. Cells, 2021, 10(12): 3323.
|
8 |
Andersson U, Ottestad W, Tracey KJ. Extracellular HMGB1: a therapeutic target in severe pulmonary inflammation including COVID-19? [J]. Mol Med, 2020, 26(1): 42.
|
9 |
Dong Y, Ming B, Dong L. The role of HMGB1 in rheumatic diseases [J]. Front Immunol, 2022, 13: 815257.
|
10 |
Wang T, Gan X. Emerging roles of HMGB1-related lncRNA: from molecular biology to clinical application [J]. Am J Physiol Cell Physiol, 2022, 323(4): C1149-C1160.
|
11 |
Wang H, Bloom O, Zhang M, et al. HMG-1 as a late mediator of endotoxin lethality in mice [J]. Science, 1999, 285(5425): 248-251.
|
12 |
Li W, Deng M, Loughran PA, et al. LPS induces active HMGB1 release from hepatocytes into exosomes through the coordinated activities of TLR4 and caspase-11/GSDMD signaling [J]. Front Immunol, 2020, 11: 229.
|
13 |
Kim J, Choo S, Sim H, et al. Biapenem reduces sepsis mortality via barrier protective pathways against HMGB1-mediated septic responses [J]. Pharmacol Rep, 2021, 73(3): 786-795
|
14 |
Kim HS, Han M, Park IH, et al. Sulfatide inhibits HMGB1 secretion by hindering toll-like receptor 4 localization within lipid rafts [J]. Front Immunol, 2020, 11: 1305.
|
15 |
Ito T, Kawahara K, Nakamura T, et al. High-mobility group box 1 protein promotes development of microvascular thrombosis in rats [J]. J Thromb Haemost, 2007, 5(1): 109-116.
|
16 |
Deng M, Tang Y, Li W, et al. The endotoxin delivery protein HMGB1 mediates caspase-11-dependent lethality in sepsis [J]. Immunity, 2018, 49(4): 740-753.e7.
|
17 |
Yang X, Cheng X, Tang Y, et al. The role of type 1 interferons in coagulation induced by gram-negative bacteria [J]. Blood, 2020, 135(14): 1087-1100.
|
18 |
Lv B, Wang H, Tang Y, et al. High-mobility group box 1 protein induces tissue factor expression in vascular endothelial cells via activation of NF-kappaB and Egr-1 [J].Thromb Haemost, 2009, 102(2): 352-9.
|
19 |
Taverna S, Tonacci A, Ferraro M, et al. High mobility group box 1: biological functions and relevance in oxidative stress related chronic diseases [J]. Cells, 2022, 11(5): 849.
|
20 |
Eslamifar Z, Behzadifard M, Soleimani M, et al. Coagulation abnormalities in SARS-CoV-2 infection: overexpression tissue factor [J]. Thromb J, 2020, 18(1): 38.
|
21 |
Yang X, Cheng X, Tang Y, et al. Bacterial endotoxin activates the coagulation cascade through gasdermin D-dependent phosphatidylserine exposure [J]. Immunity, 2019, 51(6): 983-996.e6.
|
22 |
Tadie JM, Bae HB, Jiang S, et al. HMGB1 promotes neutrophil extracellular trap formation through interactions with Toll-like receptor 4 [J]. Am J Physiol Lung Cell Mol Physiol, 2013, 304(5): L342-9.
|
23 |
Jiao Y, Li W, Wang W, et al. Platelet-derived exosomes promote neutrophil extracellular trap formation during septic shock [J]. Crit Care, 2020, 24(1): 380.
|
24 |
Maugeri N, Capobianco A, Rovere-Querini P, et al. Platelet microparticles sustain autophagy-associated activation of neutrophils in systemic sclerosis [J]. Sci Transl Med, 2018, 10(451): eaao3089.
|
25 |
Chen Z, Zhang H, Qu M, et al. Review: the emerging role of neutrophil extracellular traps in sepsis and sepsis-associated thrombosis [J]. Front Cell Infect Microbiol, 2021, 11: 653228.
|
26 |
Abrams ST, Su D, Sahraoui Y, et al. Assembly of alternative prothrombinase by extracellular histones initiates and disseminates intravascular coagulation [J]. Blood, 2021, 137(1): 103-114.
|
27 |
Iba T, Gando S, Thachil J. Anticoagulant therapy for sepsis-associated disseminated intravascular coagulation: the view from Japan [J]. J Thromb Haemost, 2014, 12(7): 1010-9.
|
28 |
Gould TJ, Vu TT, Swystun LL, et al. Neutrophil extracellular traps promote thrombin generation through platelet-dependent and platelet-independent mechanisms [J]. Arterioscler Thromb Vasc Biol, 2014, 34(9): 1977-84.
|
29 |
Shen CH, Ma ZY, Li JH, et al. Glycyrrhizin improves inflammation and apoptosis via suppressing HMGB1 and PI3K/mTOR pathway in lipopolysaccharide-induced acute liver injury [J]. Eur Rev Med Pharmacol Sci, 2020, 24(12): 7122-7130.
|
30 |
Wu CX, He LX, Guo H, et al. Inhibition effect of glycyrrhizin in lipopolysaccharide-induced high-mobility group box 1 releasing and expression from RAW264.7 cells [J]. Shock, 2015, 43(4): 412-21.
|
31 |
Mendes-Silva W, Assafim M, Ruta B, et al. Antithrombotic effect of Glycyrrhizin, a plant-derived thrombin inhibitor [J]. Thromb Res, 2003, 112(1-2): 93-98.
|
32 |
Bongoni AK, Klymiuk N, Wolf E, et al. Transgenic expression of human thrombomodulin inhibits HMGB1-induced porcine aortic endothelial cell activation [J]. Transplantation, 2016, 100(9): 1871-1879.
|
33 |
Nagato M, Okamoto K, Abe Y, et al. Recombinant human soluble thrombomodulin decreases the plasma high-mobility group box-1 protein levels, whereas improving the acute liver injury and survival rates in experimental endotoxemia [J]. Crit Care Med, 2009, 37(7): 2181-2186.
|
34 |
Tsubota M, Fukuda R, Hayashi Y, et al. Role of non-macrophage cell-derived HMGB1 in oxaliplatin-induced peripheral neuropathy and its prevention by the thrombin/thrombomodulin system in rodents: negative impact of anticoagulants [J]. J Neuroinflammation, 2019, 16(1): 199.
|
35 |
Zhang X, Li X. The role of histones and heparin in sepsis: a review [J]. J Intensive Care Med, 2022, 37(3): 319-326.
|
36 |
Guo F, Zhu X, Wu Z, et al. Clinical applications of machine learning in the survival prediction and classification of sepsis: coagulation and heparin usage matter [J]. J Transl Med, 2022, 20(1): 265.
|
37 |
Zou ZY, Huang JJ, Luan YY, et al. Early prophylactic anticoagulation with heparin alleviates mortality in critically ill patients with sepsis: a retrospective analysis from the MIMIC-Ⅳ database [J]. Burns Trauma, 2022, 10: tkac029.
|
38 |
Levy JH, Connors JM. Heparin resistance - clinical perspectives and management strategies [J]. N Engl J Med, 2021, 385(9): 826-832.
|
39 |
Tang Y, Wang X, Li Z, et al. Heparin prevents caspase-11-dependent septic lethality independent of anticoagulant properties [J]. Immunity, 2021, 54(3): 454-467.e6.
|