切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2018, Vol. 04 ›› Issue (03) : 281 -284. doi: 10.3877/cma.j.issn.2096-1537.2018.03.013

所属专题: 文献

综述

金属蛋白酶组织抑制剂-2联合胰岛素样生长因子结合蛋白-7对于急性肾损伤早期诊断及预后评估的临床意义
许心怡1, 潘纯1, 杨毅1,()   
  1. 1. 210009 南京,东南大学附属中大医院重症医学科
  • 收稿日期:2018-02-11 出版日期:2018-08-28
  • 通信作者: 杨毅

Tissue inhibitor of metalloproteinases-2 binding with insulin-like growth factor binding protein-7 in early diagnosis and prognostic evaluation of acute kidney injury

Xinyi Xu1, Chun Pan1, Yi Yang1()   

  1. 1. Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
  • Received:2018-02-11 Published:2018-08-28
  • Corresponding author: Yi Yang
引用本文:

许心怡, 潘纯, 杨毅. 金属蛋白酶组织抑制剂-2联合胰岛素样生长因子结合蛋白-7对于急性肾损伤早期诊断及预后评估的临床意义[J]. 中华重症医学电子杂志, 2018, 04(03): 281-284.

Xinyi Xu, Chun Pan, Yi Yang. Tissue inhibitor of metalloproteinases-2 binding with insulin-like growth factor binding protein-7 in early diagnosis and prognostic evaluation of acute kidney injury[J]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2018, 04(03): 281-284.

急性肾损伤(AKI)是重症患者常见的临床综合征,早期诊断可显著降低患者病死率。血肌酐和尿量作为传统诊断指标存在滞后性,近年来研究发现的一批新型生物标志物中,联合应用表达于肾小管细胞的与细胞损伤相关的细胞周期标志物金属蛋白酶组织抑制剂-2(TIMP-2)与胰岛素样生长因子结合蛋白-7(IGFBP-7)早期预测AKI的发生风险并对患者预后进行早期评估。本文将主要叙述细胞周期标志物TIMP-2和IGFBP-7用于AKI早期诊断及预后评估的相关内容。

Acute kidney injury is a common clinical syndrome in critically ill patients. Although early diagnosis could decrease mortality significantly, traditional diagnosis biomarkers such as serum creatinine and urine output usually lag. In recent years numbers of novel biomarkers have been found. As cell cycle biomarkers related to cell injury expressed on renal tubular cell, tissue inhibitor of metalloproteinases-2 (TIMP-2) binding with insulin-like growth factor binding protein-7 (IGFBP-7) could be used in early diagnosis and prognostic evaluation of AKI.

1
Hoste EA,Bagshaw SM,Bellomo R, et al. Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study [J]. Intensive Care Med, 2015, 41(8): 1411-1423.
2
Kellum JA,Bellomo R,Ronco C, et al. Kidney attack [J]. JAMA, 2012, 307(21): 2265-2266.
3
KDIGO: clinical practice guideline for acute kidney injury [J]. Kidney Int Suppl, 2012, 2: 1-138.
4
Bellomo R,Ronco C,Mehta RL, et al. Acute kidney injury in the ICU: from injury to recovery: reports from the 5th Paris International Conference [J]. Ann Intensive Care, 2017, 7(1): 49.
5
Bagshaw SM,Gibney RT. Conventional markers of kidney function [J]. Crit Care Med, 2008, 36(4): 152.
6
Mehta RL,Kellum JA,Shah SV, et al. Acute Kidney Injury Network: Report of an initiative to improve outcomes in acute kidney injury [J]. Crit Care, 2007, 11: 31.
7
Murray PT,Mehta RL,Shaw A, et al. Potential use of biomarkers in acute kidney injury: Report and summary of recommendations from the 10th Acute Dialysis Quality Initiative consensus conference [J]. Kidney Int, 2014, 85(3): 513-521.
8
Siew ED,Ware LB,Ikizler TA. Biological markers of acute kidney injury [J]. J Am Soc Nephrol, 2011, 22(5): 810-820.
9
Malhotra R,Kashani KB,Macedo E, et al. A risk prediction score for acute kidney injury in the intensive care unit [J]. Nephrol Dial Transplant, 2017, 32(5): 814-822.
10
Vanmassenhove J,Vanholder R,Nagler E, et al. Urinary and serum biomarkers for the diagnosis of acute kidney injury: an in-depth review of the literature [J]. Nephrol Dial Transplant, 2013, 28(2): 254.
11
Degeorges A,Wang F,FH Jr, et al. Distribution of IGFBP-rP1 in normal human tissues [J]. J Histochem Cytochem, 2000, 48(6): 747-754.
12
Emlet D,Pastor-Soler N,Marciszyn A, et al. Insulin-like growth factor binding protein 7 and tissue inhibitor of metalloproteinases-2: differential expression and secretion in human kidney tubule cells [J]. Am J Physiol Renal Physiol, 2017, 312(2): 284-296.
13
Zarbock A,Schmidt C,van Aken H, et al. Effect of remote ischemic preconditioning on kidney injury among high-risk patients un- dergoing cardiac surgery: a randomized clinical trial [J]. JAMA, 2015, 313(21): 2133-2141.
14
Devarajan P. Update on mechanisms of ischemic acute kidney injury [J]. J Am Soc Nephrol, 2006, 17(6): 1503-1520.
15
Waikar SS,Betensky RA,Emerson SC, et al. Imperfect gold standards for kidney injury biomarker evaluation [J]. J Am Soc Nephrol, 2012, 23(1): 13-21.
16
Rodier F,Campisi J,Bhaumik D. Two faces of p53: aging and tumor suppression [J]. Nucleic Acids Res, 2007, 35(22): 7475-7484.
17
Boonstra J,Post J. Molecular events associated with reactive oxygen species and cell cycle progression in mammalian cells [J]. Gene, 2004, 337(35): 1-13.
18
Kashani K,Al-Khafaji A,Ardiles T, et al. Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury [J]. Crit Care, 2013, 17: 25.
19
Hoste EA,McCullough PA,Kashani K, et al. Derivation and validation of cutoffs for clinical use of cell cycle arrest biomarkers [J]. Nephrol Dial Transplant, 2014, 29(11): 2054-2061.
20
Liu C,Lu XC,Mao Z, et al. The diagnostic accuracy of urinary [TIMP-2] • [IGFBP7] for acute kidney injury in adults A PRISMA-compliant meta-analysis [J]. Medicine, 2017, 96(27): e7484.
21
Meersch M,Schmidt C,van Aken H, et al. Urinary TIMP-2 and IGFBP7 as early biomarkers of acute kidney injury and renal recovery following cardiac surgery [J]. PLoS One, 2014, 9(3): e93460.
22
Gocze I,Koch M,Renner P, et al. Urinary biomarkers TIMP-2 and IGFBP7 early predict acute kidney injury after major surgery [J]. PLoS One, 2015, 10(3): e0120863.
23
Aregger F,Uehlinger DE,Witowski J, et al. Identification of IGFBP-7 by urinary proteomics as a novel prognostic marker in early acute kidney injury [J]. Kidney Int, 2014, 85(4): 909-919.
24
Dong L,Ma Q,Bennett M, et al. Urinary biomarkers of cell cycle arrest are delayed predictors of acute kidney injury after pediatric cardiopulmonary bypass [J]. Pediatr Nephrol, 2017, 32 (1): 1-10.
25
Koyner JL,Shaw AD,Chawla LS, et al. Tissue inhibitor metalloproteinase-2 (TIMP-2)•IGF-binding protein-7 (IGFBP7) levels are associated with adverse long-term outcomes in patients with AKI [J]. J Am Soc Nephrol, 2015, 26(7): 1747-1754.
26
Bell M,Larsson A,Venge P, et al. Assessment of cell-cycle arrest biomarkers to predict early and delayed acute kidney injury [J]. Dis Markers, 2015, 2015(5): 158658.
27
Beitland,Waldumgrevbo BE,Nakstad ER, et al. Urine biomarkers give early prediction of acute kidney injury and outcome after out- of-hospital cardiac arrest [J]. Critical Care, 2016, 20(1): 314.
[1] 韩圣瑾, 周正武, 翁云龙, 黄鑫. 碳酸氢钠林格液联合连续性肾脏替代疗法对创伤合并急性肾损伤患者炎症水平及肾功能的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 376-381.
[2] 张秋彬, 张楠, 林清婷, 徐军, 朱华栋, 姜辉. 急性胰腺炎合并急性肾损伤患者的预后评估[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 382-389.
[3] 莫小乔, 胡喆莹, 廖冬花, 谢天. 脓毒症继发急性肾损伤患者死亡风险预测模型构建及评估[J]. 中华危重症医学杂志(电子版), 2023, 16(03): 198-206.
[4] 吴庆华, 冒勇, 闫效坤. AECOPD并发AKI的危险因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 529-531.
[5] 李青霖, 宋仁杰, 周飞虎. 一种重型劳力性热射病相关急性肾损伤小鼠模型的建立与探讨[J]. 中华肾病研究电子杂志, 2023, 12(05): 265-270.
[6] 任加发, 邬步云, 邢昌赢, 毛慧娟. 2022年急性肾损伤领域基础与临床研究进展[J]. 中华肾病研究电子杂志, 2023, 12(05): 276-281.
[7] 李金璞, 饶向荣. 抗病毒药物和急性肾损伤[J]. 中华肾病研究电子杂志, 2023, 12(05): 287-290.
[8] 宋艳琪, 任雪景, 王文娟, 韩秋霞, 续玥, 庄凯婷, 肖拓, 蔡广研. 间充质干细胞对顺铂诱导的小鼠急性肾损伤中细胞铁死亡的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 187-193.
[9] 程庆砾. 新冠病毒感染与肾脏[J]. 中华肾病研究电子杂志, 2023, 12(04): 240-240.
[10] 李娜, 朱国贞. 肠道菌群及其代谢产物在急性肾损伤中的作用研究进展[J]. 中华肾病研究电子杂志, 2023, 12(04): 215-219.
[11] 苗软昕, 乔晞. Toll样受体在脓毒症性急性肾损伤中的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 210-214.
[12] 任国华, 杜晓晓, 洪善玲, 邵帅. 妊娠期高血压并发急性肾损伤患者血清白细胞介素-22、硫化氢及护骨素水平的变化与意义[J]. 中华肾病研究电子杂志, 2023, 12(03): 150-155.
[13] 于天宇, 杨悦, 陆海涛, 田志永, 李文歌. 高龄急性肾损伤患者连续性肾脏替代治疗的预后及影响因素[J]. 中华肾病研究电子杂志, 2023, 12(03): 134-138.
[14] 李欣赛, 彭凯, 黄萱, 王正业, 褚雪倩, 陈思思, 蒋绪燕, 李素华. 不同分型急性主动脉夹层导致围术期AKI临床预测模型的构建与比较[J]. 中华重症医学电子杂志, 2023, 09(02): 149-161.
[15] 易成, 韦伟, 赵宇亮. 急性肾脏病的概念沿革[J]. 中华临床医师杂志(电子版), 2023, 17(08): 906-910.
阅读次数
全文


摘要