切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2018, Vol. 04 ›› Issue (03) : 281 -284. doi: 10.3877/cma.j.issn.2096-1537.2018.03.013

所属专题: 文献

综述

金属蛋白酶组织抑制剂-2联合胰岛素样生长因子结合蛋白-7对于急性肾损伤早期诊断及预后评估的临床意义
许心怡1, 潘纯1, 杨毅1,()   
  1. 1. 210009 南京,东南大学附属中大医院重症医学科
  • 收稿日期:2018-02-11 出版日期:2018-08-28
  • 通信作者: 杨毅

Tissue inhibitor of metalloproteinases-2 binding with insulin-like growth factor binding protein-7 in early diagnosis and prognostic evaluation of acute kidney injury

Xinyi Xu1, Chun Pan1, Yi Yang1()   

  1. 1. Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
  • Received:2018-02-11 Published:2018-08-28
  • Corresponding author: Yi Yang
引用本文:

许心怡, 潘纯, 杨毅. 金属蛋白酶组织抑制剂-2联合胰岛素样生长因子结合蛋白-7对于急性肾损伤早期诊断及预后评估的临床意义[J/OL]. 中华重症医学电子杂志, 2018, 04(03): 281-284.

Xinyi Xu, Chun Pan, Yi Yang. Tissue inhibitor of metalloproteinases-2 binding with insulin-like growth factor binding protein-7 in early diagnosis and prognostic evaluation of acute kidney injury[J/OL]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2018, 04(03): 281-284.

急性肾损伤(AKI)是重症患者常见的临床综合征,早期诊断可显著降低患者病死率。血肌酐和尿量作为传统诊断指标存在滞后性,近年来研究发现的一批新型生物标志物中,联合应用表达于肾小管细胞的与细胞损伤相关的细胞周期标志物金属蛋白酶组织抑制剂-2(TIMP-2)与胰岛素样生长因子结合蛋白-7(IGFBP-7)早期预测AKI的发生风险并对患者预后进行早期评估。本文将主要叙述细胞周期标志物TIMP-2和IGFBP-7用于AKI早期诊断及预后评估的相关内容。

Acute kidney injury is a common clinical syndrome in critically ill patients. Although early diagnosis could decrease mortality significantly, traditional diagnosis biomarkers such as serum creatinine and urine output usually lag. In recent years numbers of novel biomarkers have been found. As cell cycle biomarkers related to cell injury expressed on renal tubular cell, tissue inhibitor of metalloproteinases-2 (TIMP-2) binding with insulin-like growth factor binding protein-7 (IGFBP-7) could be used in early diagnosis and prognostic evaluation of AKI.

1
Hoste EA,Bagshaw SM,Bellomo R, et al. Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study [J]. Intensive Care Med, 2015, 41(8): 1411-1423.
2
Kellum JA,Bellomo R,Ronco C, et al. Kidney attack [J]. JAMA, 2012, 307(21): 2265-2266.
3
KDIGO: clinical practice guideline for acute kidney injury [J]. Kidney Int Suppl, 2012, 2: 1-138.
4
Bellomo R,Ronco C,Mehta RL, et al. Acute kidney injury in the ICU: from injury to recovery: reports from the 5th Paris International Conference [J]. Ann Intensive Care, 2017, 7(1): 49.
5
Bagshaw SM,Gibney RT. Conventional markers of kidney function [J]. Crit Care Med, 2008, 36(4): 152.
6
Mehta RL,Kellum JA,Shah SV, et al. Acute Kidney Injury Network: Report of an initiative to improve outcomes in acute kidney injury [J]. Crit Care, 2007, 11: 31.
7
Murray PT,Mehta RL,Shaw A, et al. Potential use of biomarkers in acute kidney injury: Report and summary of recommendations from the 10th Acute Dialysis Quality Initiative consensus conference [J]. Kidney Int, 2014, 85(3): 513-521.
8
Siew ED,Ware LB,Ikizler TA. Biological markers of acute kidney injury [J]. J Am Soc Nephrol, 2011, 22(5): 810-820.
9
Malhotra R,Kashani KB,Macedo E, et al. A risk prediction score for acute kidney injury in the intensive care unit [J]. Nephrol Dial Transplant, 2017, 32(5): 814-822.
10
Vanmassenhove J,Vanholder R,Nagler E, et al. Urinary and serum biomarkers for the diagnosis of acute kidney injury: an in-depth review of the literature [J]. Nephrol Dial Transplant, 2013, 28(2): 254.
11
Degeorges A,Wang F,FH Jr, et al. Distribution of IGFBP-rP1 in normal human tissues [J]. J Histochem Cytochem, 2000, 48(6): 747-754.
12
Emlet D,Pastor-Soler N,Marciszyn A, et al. Insulin-like growth factor binding protein 7 and tissue inhibitor of metalloproteinases-2: differential expression and secretion in human kidney tubule cells [J]. Am J Physiol Renal Physiol, 2017, 312(2): 284-296.
13
Zarbock A,Schmidt C,van Aken H, et al. Effect of remote ischemic preconditioning on kidney injury among high-risk patients un- dergoing cardiac surgery: a randomized clinical trial [J]. JAMA, 2015, 313(21): 2133-2141.
14
Devarajan P. Update on mechanisms of ischemic acute kidney injury [J]. J Am Soc Nephrol, 2006, 17(6): 1503-1520.
15
Waikar SS,Betensky RA,Emerson SC, et al. Imperfect gold standards for kidney injury biomarker evaluation [J]. J Am Soc Nephrol, 2012, 23(1): 13-21.
16
Rodier F,Campisi J,Bhaumik D. Two faces of p53: aging and tumor suppression [J]. Nucleic Acids Res, 2007, 35(22): 7475-7484.
17
Boonstra J,Post J. Molecular events associated with reactive oxygen species and cell cycle progression in mammalian cells [J]. Gene, 2004, 337(35): 1-13.
18
Kashani K,Al-Khafaji A,Ardiles T, et al. Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury [J]. Crit Care, 2013, 17: 25.
19
Hoste EA,McCullough PA,Kashani K, et al. Derivation and validation of cutoffs for clinical use of cell cycle arrest biomarkers [J]. Nephrol Dial Transplant, 2014, 29(11): 2054-2061.
20
Liu C,Lu XC,Mao Z, et al. The diagnostic accuracy of urinary [TIMP-2] • [IGFBP7] for acute kidney injury in adults A PRISMA-compliant meta-analysis [J]. Medicine, 2017, 96(27): e7484.
21
Meersch M,Schmidt C,van Aken H, et al. Urinary TIMP-2 and IGFBP7 as early biomarkers of acute kidney injury and renal recovery following cardiac surgery [J]. PLoS One, 2014, 9(3): e93460.
22
Gocze I,Koch M,Renner P, et al. Urinary biomarkers TIMP-2 and IGFBP7 early predict acute kidney injury after major surgery [J]. PLoS One, 2015, 10(3): e0120863.
23
Aregger F,Uehlinger DE,Witowski J, et al. Identification of IGFBP-7 by urinary proteomics as a novel prognostic marker in early acute kidney injury [J]. Kidney Int, 2014, 85(4): 909-919.
24
Dong L,Ma Q,Bennett M, et al. Urinary biomarkers of cell cycle arrest are delayed predictors of acute kidney injury after pediatric cardiopulmonary bypass [J]. Pediatr Nephrol, 2017, 32 (1): 1-10.
25
Koyner JL,Shaw AD,Chawla LS, et al. Tissue inhibitor metalloproteinase-2 (TIMP-2)•IGF-binding protein-7 (IGFBP7) levels are associated with adverse long-term outcomes in patients with AKI [J]. J Am Soc Nephrol, 2015, 26(7): 1747-1754.
26
Bell M,Larsson A,Venge P, et al. Assessment of cell-cycle arrest biomarkers to predict early and delayed acute kidney injury [J]. Dis Markers, 2015, 2015(5): 158658.
27
Beitland,Waldumgrevbo BE,Nakstad ER, et al. Urine biomarkers give early prediction of acute kidney injury and outcome after out- of-hospital cardiac arrest [J]. Critical Care, 2016, 20(1): 314.
[1] 张婧琦, 江洋, 孙佳璐, 唐兴喆, 赵宇飞, 崔颖, 李信响, 戴景月, 傅琳, 彭新桂. 基于肾周CT特征结合血清肌酐水平探讨脓毒症伴急性肾损伤的早期识别[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 285-292.
[2] 樊恒, 孙敏, 朱建华. 红景天苷通过抑制PI3K/AKT/mTOR信号通路对大鼠脓毒症急性肾损伤的保护作用[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(03): 188-195.
[3] 张锦丽, 席毛毛, 褚志刚, 栾夏刚, 陈诺, 王德运, 谢卫国. 大面积烧伤患者发生早期急性肾损伤的危险因素分析[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(04): 282-287.
[4] 彭瑞, 杨瑞文, 魏澹宁, 夏永良. 琥珀酸受体1加重肾脏缺血再灌注损伤的作用研究[J/OL]. 中华移植杂志(电子版), 2024, 18(03): 159-164.
[5] 中华医学会器官移植学分会, 中国医师协会器官移植医师分会. 中国肝移植受者肾损伤管理临床实践指南(2023版)[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 276-288.
[6] 杜霞, 马梦青, 曹长春. 造影剂诱导的急性肾损伤的发病机制及干预靶点研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 279-282.
[7] 郭俊楠, 林惠, 任艺林, 乔晞. 氨基酸代谢异常在急性肾损伤向慢性肾脏病转变中的作用研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 283-287.
[8] 袁楠, 黄梦杰, 白云凤, 李晓帆, 罗从娟, 陈健文. 急性肾损伤-慢性肾脏病转化小鼠模型制备的教学要点及学习效果分析[J/OL]. 中华肾病研究电子杂志, 2024, 13(04): 226-230.
[9] 林玲, 李京儒, 沈瑞华, 林惠, 乔晞. 基于生物信息学分析小鼠急性肾损伤和急性肺损伤的枢纽基因[J/OL]. 中华肾病研究电子杂志, 2024, 13(03): 134-144.
[10] 周建芳, 罗旭颖, 张琳琳, 李宏亮, 杨燕琳, 陈光强, 石广志. 开颅术后危重患者急性肾损伤的发病率、危险因素及其对预后的影响[J/OL]. 中华重症医学电子杂志, 2024, 10(02): 148-156.
[11] 肖增丽, 杜安琪, 孙瑶, 赵慧颖, 安友仲. 脑出血术后AKI发生的危险因素分析及预测模型建立[J/OL]. 中华重症医学电子杂志, 2024, 10(02): 157-163.
[12] 司楠, 孙洪涛. 创伤性脑损伤后肾功能障碍危险因素的研究进展[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(05): 300-305.
[13] 沈炎, 张俊峰, 唐春芳. 预后营养指数结合血清降钙素原、胱抑素C及视黄醇结合蛋白对急性胰腺炎并发急性肾损伤的预测价值[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 536-540.
[14] 崔秋子, 姚红曼, 艾迎春. 监测NLR、PLR、CAR、白蛋白、血钙及血糖指标水平对急性胰腺炎患者急性肾损伤的预测价值分析[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(03): 244-248.
[15] 颜世锐, 熊辉. 感染性心内膜炎合并急性肾损伤患者的危险因素探索及死亡风险预测[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 618-624.
阅读次数
全文


摘要