切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2019, Vol. 05 ›› Issue (02) : 199 -202. doi: 10.3877/cma.j.issn.2096-1537.2019.02.021

所属专题: 文献

综述

高通量测序技术在脓毒症病原微生物检测中的价值
许娜娜1, 周敏2, 尹梅3, 崔毅2, 李琛2, 陈晓梅2, 丁士芳2, 翟茜2, 吴大玮2, 王昊2,()   
  1. 1. 250012 济南,山东大学齐鲁医学院
    2. 250012 济南,山东大学齐鲁医院重症医学科
    3. 250012 济南,山东大学齐鲁医院老年病科
  • 收稿日期:2018-11-07 出版日期:2019-05-28
  • 通信作者: 王昊
  • 基金资助:
    国家自然科学基金(81873927); 中国博士后科学基金面上资助项目(2018M632685); 山东省自然科学基金资助项目(ZR2017PH050)

The value of high-throughput sequencing in the pathogenic detection of sepsis

Nana Xu1, Min Zhou2, Mei Yin3, Yi Cui2, Chen Li2, Xiaomei Chen2, Shifang Ding2, Qian Zhai2, Dawei Wu2, Hao Wang2,()   

  1. 1. Cheeloo College of Medicine, Shandong University, Jinan 250012, China
    2. Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan 250000, China
    3. Department of Geriatrics, Qilu Hospital of Shandong University, Jinan 250000, China
  • Received:2018-11-07 Published:2019-05-28
  • Corresponding author: Hao Wang
  • About author:
    Corresponding author: Wang Hao, Email:
引用本文:

许娜娜, 周敏, 尹梅, 崔毅, 李琛, 陈晓梅, 丁士芳, 翟茜, 吴大玮, 王昊. 高通量测序技术在脓毒症病原微生物检测中的价值[J]. 中华重症医学电子杂志, 2019, 05(02): 199-202.

Nana Xu, Min Zhou, Mei Yin, Yi Cui, Chen Li, Xiaomei Chen, Shifang Ding, Qian Zhai, Dawei Wu, Hao Wang. The value of high-throughput sequencing in the pathogenic detection of sepsis[J]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2019, 05(02): 199-202.

脓毒症是急危重症医学面临的重要临床问题,发病率、病死率居高不下,早期病原微生物诊断对尽早实施目标治疗、降低病死率至关重要。目前的病原微生物检测技术在及时性和准确性等方面仍有欠缺。高通量测序技术一定程度上能够克服传统病原学检测技术的缺点,并正在逐步应用于临床,但目前仍存在一系列问题。本文将对该技术在脓毒症病原微生物检测中的价值及其优缺点作一综述。

Sepsis is an important clinical problem in intensive care units, and lead to significant high morbidity and mortality. Early detection of pathogen is crucial for the implementation of targeted treatment and improvement of prognosis. However, the current pathogenic detection techniques are still lack of timeliness and accuracy. High-throughput sequencing technique may overcome these shortcomings, and is gradually being applied in the hospitals. However, it also has a series of disadvantages. This article will review the value of this technique in the detection of sepsis pathogen and the related advantages and disadvantages.

1
Perner A, Cecconi M, Cronhjort M, et al. Expert statement for the management of hypovolemia in sepsis [J]. Intensive Care Med, 2018, 44(6):791-798.
2
Rhodes A, Evans LE, Alhazzani W, et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016 [J]. Crit Care Med, 2017, 45(3):486-552.
3
Gavrilov SN, Skachkova TS, Shipulina OY, et al. Contemporary molecular-genetic methods used for etiologic diagnostics of sepsis [J]. Zh Mikrobiol Epidemiol Immunobiol, 2016, (2):91-99.
4
Burillo A, Bouza E. Use of rapid diagnostic techniques in ICU patients with infections [J]. BMC Infect Dis, 2014, 14(1):593.
5
姜晓峰. 高通量测序在临床分子诊断中的应用与展望 [J]. 检验医学, 2017, 32(4):250-254.
6
Long Y, Ni PX, Sun RX, et al. Rapid detection and identification of infectious pathogens based on high-throughput sequencing [J]. Chin Med J, 2015, 128(7):877.
7
Fu Y, Sun S, Mao Q, et al. Seroepidemiology of Coxsackievirus A10 infection in infants and children: A prospective cohort study in Jiangsu, China [J]. J Infect, 2018, 77(2):158-164.
8
Abril MK, Barnett AS, Wegermann K, et al. Diagnosis of Capnocytophaga canimorsus sepsis by whole-genome next-generation sequencing [J]. Open Forum Infect Dis, 2016, 3(3):w144.
9
Long Y, Zhang Y, Gong Y, et al. Diagnosis of sepsis with cell-free DNA by next-generation sequencing technology in ICU patients [J]. Arch Med Res, 2016, 47(5):365-371.
10
Parize P, Muth E, Richaud C, et al. Untargeted next-generation sequencing-based first-line diagnosis of infection in immunocompromised adults: a multicentre, blinded, prospective study [J]. Clin Microbiol Infect, 2017, 23(8):571-574.
11
Brenner T, Decker SO, Grumaz S, et al. Next-generation sequencing diagnostics of bacteremia in sepsis (Next GeneSiS-Trial) [J]. Medicine, 2018, 97(6):e9868.
12
Flygare S, Simmon K, Miller C, et al. Taxonomer: an interactive metagenomics analysis portal for universal pathogen detection and host mRNA expression profiling [J]. Genome Biology, 2016, 17(1):111.
13
Decker S, Sigl A, Grumaz C, et al. Immune-response patterns and next generation sequencing diagnostics for the detection of mycoses in patients with septic shock—results of a combined clinical and experimental investigation [J]. Int J Mol Sci, 2017, 18(8):1796.
14
Wilson MR, Naccache SN, Samayoa E, et al. Actionable diagnosis of neuroleptospirosis by next-generation sequencing [J]. N Engl J Med, 2014, 370(25):2408-2417.
15
Piantadosi A, Kanjilal S, Ganesh V, et al. Rapid detection of powassan virus in a patient with encephalitis by metagenomic sequencing [J]. Clin Infect Dis, 2018, 66(5):789-792.
16
黄晶晶,肖盟,徐英春. 二代测序技术在微生物和感染性疾病中的应用 [J]. 协和医学杂志, 2018, 9(5):448-452.
17
Yan F, Xiao Y, Li M, et al. Metagenomic analysis identified human rhinovirus B91 infection in an adult suffering from severe pneumonia [J]. Am J Respir Crit Care Med, 2017, 195(11):1535-1536.
18
Schlaberg R, Queen K, Simmon K, et al. Viral pathogen detection by metagenomics and pan-viral group polymerase chain reaction in children with pneumonia lacking identifiable etiology [J]. J Infect Dis, 2017, 215(9):1407-1415.
19
Langelier C, Zinter MS, Kalantar K, et al. Metagenomic sequencing detects respiratory pathogens in hematopoietic cellular transplant patients [J]. Am J Respir Crit Care Med, 2018, 197(4):524-528.
20
赵伟丽,乌依罕,李红芳, 等. 伪狂犬病毒脑炎临床观察与脑脊液二代测序鉴定 [J]. 中华医学杂志, 2018, 98(15):1152-1157.
21
Ai J, Weng S, Cheng Q, et al. Human endophthalmitis caused by pseudorabies virus infection, China, 2017 [J]. Emerg Infect Dis, 2018, 24(6):1087-1090.
22
Zhang Y, Ai JW, Cui P, et al. A cluster of cases of pneumocystis pneumonia identified by shotgun metagenomics approach [J] J Infect, 2019, 78(2):158-169.
23
李林海,陈丽丹,肖斌, 等. 宏基因组测序在感染性疾病病原体检测中的应用 [J]. 传染病信息, 2018, 31(1):15-18.
24
Couto N, Schuele L, Raangs EC, et al. Critical steps in clinical shotgun metagenomics for the concomitant detection and typing of microbial pathogens [J]. Sci Rep, 2018, 8(1):13767.
25
Hasman H, Saputra D, Sicheritz-Ponten T, et al. Rapid whole-genome sequencing for detection and characterization of microorganisms directly from clinical samples [J]. J Clin Microbiol, 2013, 52(1):139-146.
26
Grumaz S, Stevens P, Grumaz C, et al. Next-generation sequencing diagnostics of bacteremia in septic patients [J]. Genome Med, 2016, 8(1):73.
27
华大医学. 漫谈mNGS的现在与未来|文献分享[EB/OL]. 2018-10-12.

URL    
[1] 韩媛媛, 热孜亚·萨贝提, 冒智捷, 穆福娜依·艾尔肯, 陆晨, 桑晓红, 阿尔曼·木拉提, 张丽. 组合式血液净化治疗对脓毒症患者血清炎症因子水平和临床预后的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 272-278.
[2] 孟建标, 张庚, 焦燕娜. 脓毒症合并心功能障碍患者早期肠道微生态改变的探讨[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 279-285.
[3] 陈宇, 冯芳, 张露, 刘健. 基于生物信息学分析筛选脓毒症心肌病关键致病基因[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 286-291.
[4] 莫小乔, 胡喆莹, 廖冬花, 谢天. 脓毒症继发急性肾损伤患者死亡风险预测模型构建及评估[J]. 中华危重症医学杂志(电子版), 2023, 16(03): 198-206.
[5] 张晓燕, 肖东琼, 高沪, 陈琳, 唐发娟, 李熙鸿. 转录因子12过表达对脓毒症相关性脑病大鼠大脑皮质的保护作用及其机制[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 540-549.
[6] 魏徐, 张鸽, 伍金林. 新生儿脓毒症相关性凝血病的监测和治疗[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 379-386.
[7] 姚咏明. 如何精准评估烧伤脓毒症患者免疫状态[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 552-552.
[8] 彭雨诗, 苗芸, 严紫嫣. 宏基因组高通量测序诊断肾移植术后华支睾吸虫感染一例[J]. 中华移植杂志(电子版), 2023, 17(05): 297-299.
[9] 窦上文, 邓欢, 刘邦锋, 岳高远志, 朱华财, 刘永达. 术前复查尿培养在预测微通道经皮肾镜取石术相关感染并发症中的作用[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 361-366.
[10] 李伟, 卓剑, 黄川, 黄有攀. Lac、HO-1、sRAGE、CRP/ALB表达及脓毒症并发ARDS危险因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 514-516.
[11] 苗软昕, 乔晞. Toll样受体在脓毒症性急性肾损伤中的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 210-214.
[12] 李世明, 黄蔚, 刘玲. HMGB1介导脓毒症相关凝血功能障碍的作用机制及其治疗进展[J]. 中华重症医学电子杂志, 2023, 09(03): 269-273.
[13] 高超, 巢杰, 邱海波. T-bet:脓毒症免疫失衡中Th17细胞的新型调节分子[J]. 中华重症医学电子杂志, 2023, 09(03): 280-285.
[14] 谭睿, 王晶, 於江泉, 郑瑞强. 脓毒症中高密度脂蛋白、载脂蛋白A-I和血清淀粉样蛋白A的作用研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(06): 749-753.
[15] 蔡荇, 郑瑞强. 肝素结合蛋白在脓毒症中的应用及研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(04): 487-490.
阅读次数
全文


摘要