切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2019, Vol. 05 ›› Issue (03) : 274 -277. doi: 10.3877/cma.j.issn.2096-1537.2019.03.013

所属专题: 文献

综述

乌司他丁脏器保护机制的研究进展
赵丽1, 王胜1,()   
  1. 1. 200072 上海,同济大学附属第十人民医院重症医学科
  • 收稿日期:2018-05-28 出版日期:2019-08-28
  • 通信作者: 王胜

Research progress on mechanisms of organ protection by Ulinastatin

Li Zhao1, Sheng Wang1,()   

  1. 1. Department of Critical Care Medicine, Shanghai Tenth People′s Hospital, Tongji University, Shanghai 200072, China
  • Received:2018-05-28 Published:2019-08-28
  • Corresponding author: Sheng Wang
  • About author:
    Corresponding author: Wang Sheng, Email:
引用本文:

赵丽, 王胜. 乌司他丁脏器保护机制的研究进展[J]. 中华重症医学电子杂志, 2019, 05(03): 274-277.

Li Zhao, Sheng Wang. Research progress on mechanisms of organ protection by Ulinastatin[J]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2019, 05(03): 274-277.

乌司他丁是救治急危重症患者的常用药物,本文系统阐述了乌司他丁对人体器官潜在的保护效应及其作用机制,如抗炎、抗氧化、免疫调节及抗凋亡作用等,以期为合理应用乌司他丁提供循证医学依据。

Ulinastatin is a commonly used drug to treat patients with critical illness. This review systematically described the protective effects of Ulinastatin on human organs and the underlying mechanisms, such as antiinflammatory, antioxidation, immune regulation and antiapoptosis, in order to provide evidence for the rational application of Ulinastatin.

1
Shu H, Liu K, He Q, et al. Ulinastatin, a protease inhibitor, may inhibit allogeneic blood transfusion-associated pro-inflammatory cytokines and systemic inflammatory response syndrome and improve postoperative recovery [J]. Blood Transfus, 2014, 12(Suppl 1): S109-S118.
2
Sapan HB, Paturusi I, Jusuf I, et al. Pattern of cytokine (IL-6 and IL-10) level as inflammation and anti-inflammation mediator of multiple organ dysfunction syndrome (MODS) in polytrauma [J]. Int J Burns Trauma, 2016, 6(2): 37-43.
3
Yang R, Tenhunen J, Tonnessen TI. HMGB1 and histones play a significant role in inducing systemic inflammation and multiple organ dysfunctions in severe acute pancreatitis [J]. Int J Inflam, 2017, 2017(18): 175-177.
4
Zhang L, Wang CC. Inflammatory response of macrophages in infection [J]. Hepatobiliary Pancreat Dis Int, 2014, 13(2): 138-152.
5
Hatakeyama N, Matsuda N. Alert cell strategy: mechanisms of inflammatory response and organ protection [J]. Curr Pharm Des, 2014, 20(36): 5766-5778.
6
Moggia E, Koti R, Belgaumkar AP, et al. Pharmacological interventions for acute pancreatitis [J]. Cochrane Database Syst Rev, 2017, 4(1): 138-144.
7
Sung YH, Shin MS, Ko IG, et al. Ulinastatin suppresses lipopolysaccharide-induced prostaglandin E2 synthesis and nitric oxide production through the downregulation of nuclear factorkappaB in BV2 mouse microglial cells [J]. Int J Mol Med, 2013, 31(5): 1030-1036.
8
Li D, Ji H, Zhao B, et al. Therapeutic effect of ulinastatin on pulmonary fibrosis via downregulation of TGF beta1, TNF alpha and NF kappaB [J]. Mol Med Rep, 2018, 17(1): 1717-1723.
9
Wei F, Liu S, Luo L, et al. Anti-inflammatory mechanism of ulinastatin: Inhibiting the hyperpermeability of vascular endothelial cells induced by TNF-alpha via the RhoA/ROCK signal pathway [J]. Int Immunopharmacol, 2017, 46(2): 20-27.
10
Chen J, Wang J, Su C, et al. Urinary trypsin inhibitor attenuates LPS-induced endothelial barrier dysfunction by upregulation of vascular endothelial-cadherin expression [J]. Inflamm Res, 2016, 65(3): 213-224.
11
Craciun EM, Altfelder F, Kuss N, et al. Anti-inflammatory effects of selected drugs on activated neonatal and adult neutrophils [J]. Scand J Clin Lab Invest, 2013, 73(5): 407-413.
12
Atal SS, Atal S. Ulinastatin-a newer potential therapeutic option for multiple organ dysfunction syndrome [J]. J Basic Clin Physiol Pharmacol, 2016, 27(2): 91-99.
13
Butterfield DA, Boyd-Kimball D. Oxidative stress, amyloid-beta peptide, and altered key molecular pathways in the pathogenesis and progression of Alzheimer′s disease [J]. J Alzheimers Dis, 2018, 62(3): 1345-1367.
14
Zou YL, Luo WB, Xie L, et al. Targeting human 8-oxoguanine DNA glycosylase to mitochondria protects cells from high glucose-induced apoptosis [J]. Endocrine, 2018, 60(3): 445-457.
15
Li C, Ma D, Chen M, et al. Ulinastatin attenuates LPS-induced human endothelial cells oxidative damage through suppressing JNK/c-Jun signaling pathway [J]. Biochem Biophys Res Commun, 2016, 474(3): 572-578.
16
Liu B, Huang W, Xiao X, et al. Neuroprotective effect of ulinastatin on spinal cord ischemia-reperfusion injury in rabbits [J]. Oxid Med Cell Longev, 2015, 2015(6): 24-29.
17
Tay NQ, Lee DCP, Chua YL, et al. CD40L expression allows CD8T cells to promote their own expansion and differentiation through dendritic cells [J]. Front Immunol, 2017, 8(1): 48-54.
18
Venet F, Rimmele T, Monneret G. Management of sepsis-induced immunosuppression [J]. Crit Care Clin, 2018, 34(1): 97-106.
19
Zhang L, Wang N, Zhou S, et al. Preventive effect of ulinastatin on postoperative complications, immunosuppression, and recurrence in esophagectomy patients [J]. World J Surg Oncol, 2013, 11(8): 84-89.
20
Gao C, Li R, Wang S. Ulinastatin protects pulmonary tissues from lipopolysaccharide-induced injury as an immunomodulator [J]. J Trauma Acute Care Surg, 2012, 72(1): 169-176.
21
Xue L, Borne Y, Mattisson IY, et al. FADD, Caspase-3, and Caspase-8 and incidence of coronary Events [J]. Arterioscler Thromb Vasc Biol, 2017, 37(5): 983-989.
22
Dou C, Han M, Zhang B, et al. Chrysotoxene induces apoptosis of human hepatoblastoma HepG2 cells in vitro and in vivo via activation of the mitochondria-mediated apoptotic signaling pathway [J]. Oncol Lett, 2018, 15(4): 4611-4618.
23
Wang W, Liu X, Guo X, et al. Mitofusin-2 triggers cervical carcinoma cell hela apoptosis via mitochondrial pathway in mouse model [J]. Cell Physiol Biochem, 2018, 46(1): 69-81.
24
Anania VG, Yu K, Gnad F, et al. Uncovering a dual regulatory role for caspases during endoplasmic reticulum stress-induced cell death [J]. Mol Cell Proteomics, 2016, 15(7): 2293-2307.
25
Li L, Du Y, Ju F, et al. Calcium plays a key role in paraoxon-induced apoptosis in EL4 cells by regulating both endoplasmic reticulum-and mitochondria-associated pathways [J]. Toxicol Mech Methods, 2016, 26(3): 211-220.
26
Abraham P, Rodriques J, Moulick N, et al. Efficacy and safety of intravenous ulinastatin versus placebo along with standard supportive care in subjects with mild or severe acute pancreatitis [J]. J Assoc Physicians India, 2013, 61(8): 535-538.
27
Li L, Hao J, Jiang X, et al. Cardioprotective effects of ulinastatin against isoproterenol-induced chronic heart failure through the PI3KAkt, p38 MAPK and NF-kappaB pathways [J]. Mol Med Rep, 2018, 17(1): 1354-1360.
28
Yu Z, Rayile A, Zhang X, et al. Ulinastatin protects against lipopolysaccharide-induced cardiac microvascular endothelial cell dysfunction via downregulation of lncRNA MALAT1 and EZH2 in sepsis [J]. Int J Mol Med, 2017, 39(5): 1269-1276.
29
Yuhara H, Ogawa M, Kawaguchi Y, et al. Pharmacologic prophylaxis of post-endoscopic retrograde cholangiopancreatography pancreatitis: protease inhibitors and NSAIDs in a meta-analysis [J]. J Gastroenterol, 2014, 49(3): 388-399.
30
Caironi P, Tognoni G, Masson S, et al. Albumin replacement in patients with severe sepsis or septic shock [J]. N Engl J Med, 2014, 370(15): 1412-1421.
[1] 王育凯, 陈军贤, 施小伟, 吴本权. 连续性肾脏替代治疗联合乌司他丁对严重脓毒症患者临床疗效的Meta分析[J]. 中华危重症医学杂志(电子版), 2021, 14(04): 297-307.
[2] 徐桂萍, 李青青, 张宇轩, 吴丽. 持续静脉泵注利多卡因对脓毒症大鼠急性肺损伤及炎症反应的影响[J]. 中华危重症医学杂志(电子版), 2019, 12(03): 145-151.
[3] 寇夕, 刘虹. 乌司他丁通过p38丝裂原活化蛋白激酶通路治疗大鼠脓毒症急性肝损伤的相关性研究[J]. 中华危重症医学杂志(电子版), 2017, 10(05): 309-315.
[4] 刘国娟, 周丽华, 张利鹏, 杨大刚. 乌司他丁对内毒素血症心肌损伤大鼠线粒体通路介导细胞凋亡的影响[J]. 中华危重症医学杂志(电子版), 2017, 10(04): 235-241.
[5] 张慧慧, 蔡国龙, 胡才宝, 颜默磊. 乌司他丁对脓毒症大鼠急性肺损伤的保护作用及其机制研究[J]. 中华危重症医学杂志(电子版), 2017, 10(03): 153-158.
[6] 曹超, 柴艳芬, 寿松涛, 王军. 乌司他丁对脓毒症小鼠调节性T细胞凋亡及细胞因子分泌的影响[J]. 中华危重症医学杂志(电子版), 2017, 10(03): 149-152.
[7] 李雪娇, 陈俊杰, 王磊, 王立峰, 康健, 李永宁. 乌司他丁对脓毒症大鼠肝脏保护作用及其抗肝细胞凋亡机制的研究[J]. 中华危重症医学杂志(电子版), 2017, 10(02): 76-81.
[8] 王树明, 刘锐, 刘振宝, 田枫, 井维斌. 低分子肝素钠持续气道内给药联合静脉滴注乌司他丁治疗吸入性损伤的临床初步研究[J]. 中华损伤与修复杂志(电子版), 2020, 15(04): 303-307.
[9] 洪玉, 刘嘉羿, 王寿平, 张磊. 乌司他丁后处理对肝切除老年大鼠学习记忆功能的影响及机制研究[J]. 中华普通外科学文献(电子版), 2018, 12(05): 310-313.
[10] 刘疏柯, 刘思佚, 魏伏, 古妮娜, 张丹. 乌司他丁对炎症状态下血管内皮屏障功能的影响及机制[J]. 中华重症医学电子杂志, 2020, 06(04): 424-430.
[11] 刘思佚, 魏伏, 刘疏柯, 罗丽, 许珊, 张丹. 乌司他丁抑制肿瘤坏死因子-α诱导血管内皮细胞高通透性的机制研究[J]. 中华重症医学电子杂志, 2018, 04(02): 170-175.
[12] 周嫏嬛, 龚伟玲, 孙孚春, 宋颂. 生长抑素联合乌司他丁治疗消化道出血的Meta分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(01): 26-32.
[13] 王敏, 刘虹. 乌司他丁经p38MAPK通路对脓毒症大鼠急性肾损伤影响的研究[J]. 中华临床医师杂志(电子版), 2022, 16(06): 566-571.
[14] 姜敏, 华丽, 王雄, 邓静, 何苗, 曾杰. 依达拉奉联合乌司他丁对胸腔镜手术患者肺功能及肺表面活性蛋白A表达的影响[J]. 中华临床医师杂志(电子版), 2020, 14(03): 222-227.
[15] 邹宪宝, 孙宝泉, 于中锴, 张艳敏, 赵波, 曲爱君. 乌司他丁对急性有机磷农药中毒并发急性胰腺炎酶学影响的研究[J]. 中华卫生应急电子杂志, 2017, 03(06): 334-338.
阅读次数
全文


摘要