切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2019, Vol. 05 ›› Issue (03) : 278 -281. doi: 10.3877/cma.j.issn.2096-1537.2019.03.014

所属专题: 文献

综述

β1肾上腺素受体失敏在脓毒症心肌功能障碍中的研究进展
张海丹1, 李培武1,(), 马莉1   
  1. 1. 730030 兰州大学第二医院急救中心
  • 收稿日期:2018-05-14 出版日期:2019-08-28
  • 通信作者: 李培武
  • 基金资助:
    兰州市人才创新创业项目(2016-RC-52)

Research advances of β1-adrenergic receptor desensitization in sepsis-induced myocardial dysfunction

Haidan Zhang1, Peiwu Li1,(), Li Ma1   

  1. 1. Emergency Center, Lanzhou University, Second Hospital, Lanzhou 730030, China
  • Received:2018-05-14 Published:2019-08-28
  • Corresponding author: Peiwu Li
  • About author:
    Corresponding author: Li Peiwu, Email:
引用本文:

张海丹, 李培武, 马莉. β1肾上腺素受体失敏在脓毒症心肌功能障碍中的研究进展[J]. 中华重症医学电子杂志, 2019, 05(03): 278-281.

Haidan Zhang, Peiwu Li, Li Ma. Research advances of β1-adrenergic receptor desensitization in sepsis-induced myocardial dysfunction[J]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2019, 05(03): 278-281.

脓毒症诱导的心肌功能障碍(SIMD)是造成脓毒症预后不良的重要原因之一。β肾上腺素受体(β-AR)信号通路系统的异常可引起心功能障碍,其中β-AR受体失敏是心功能障碍的主要原因之一,其机制包括受体解偶联、内吞和基因表达水平下调引起的受体数量、功能的降低。本文主要讨论β1-AR失敏与SIMD的关系,试图为治疗SIMD提供一定的理论依据,为后续的深入研究奠定基础。

Sepsis-induced myocardial dysfunction (SIMD) is an important cause of poor prognosis of sepsis. Abnormalities in the β-adrenergic receptor (β-AR) signaling pathway such as β-AR receptor desensitization may cause cardiac dysfunction. The mechanisms of β-AR receptor desensitization include receptor resolution, coupling, receptor endocytosis and down-regulation of gene expression, causing a decrease in the number and function of β-AR receptors. This article mainly discusses the relationship between β1-AR desensitization and SIMD, tries to provide a theoretical basis for the treatment of SIMD, and lays a foundation for further research.

1
Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3) [J]. JAMA, 2016, 315(8): 801-810.
2
Hawiger J, Veach RA, Zienkiewicz J. New paradigms in sepsis: from prevention to protection of failing microcirculation [J]. J Thromb Haemost, 2015, 13(10): 1743-1756.
3
Sharawy N, Lehmann C. New directions for sepsis and septic shock research [J]. J Surg Res, 2015, 194(2): 520-527.
4
Romero-Bermejo FJ, Ruiz-Bailen M, Gil-Cebrian J, et al. Sepsis-induced cardiomyopathy [J]. Curr Cardiol Rev, 2011, 7(3): 163-183.
5
Sato R, Nasu M. A review of sepsis-induced cardiomyopathy [J]. J Intensive Care, 2015, 3: 48.
6
De Montmolin E, Aboab J, Mansart A, et al. Bench-to-bedside review: β-adrenergic modulation in sepsis [J]. Crit Care, 2009, 13(5): 1-8.
7
Zaky A, Deem S, Bendjelid K, et al. Characterization of cardiac dysfunction in sepsis: an ongoing challenge [J]. Shock, 2014, 41(1): 12-24.
8
Rudiger A. Beta-block the septic heart [J]. Crit Care Med, 2010, 38(10 Suppl): s608-612.
9
Kakihara Y, Ito T, Nakahara M, et al. Sepsis-induced myocardial dysfunction: pathophysiology and treatment [J]. J Intensive Care, 2016, 4: 22.
10
Sanfilippo F, Corredor C, Fletcher N, et al. Erratum to: diastolic dysfunction and mortality in septic patients: a systematic review and meta-analysis [J]. Intensive Care Med, 2015, 41(6): 1178-1179.
11
Huang SJ, Nalos M, Mclean AS. Is early ventricular dysfunction or dilatation associated with lower mortality rate in adult severe sepsis and septic shock? a meta-analysis [J]. Crit Care, 2013, 17(3): R96.
12
Suzuki T, Suzuki Y, Okuda J, et al. Sepsis-induced cardiac dysfunction and β-adrenergic blockade therapy for sepsis [J]. J Intensive Care, 2017, 5(1): 22.
13
Woo AY, Xiao RP. β-Adrenergic receptor subtype signaling in heart: from bench to bedside [J]. Acta Pharmacol Sin, 2012, 33(3): 335-341.
14
Brinks H, Koch WJ. BetaARKct: a therapeutic approach for improved adrenergic signaling and function in heart disease [J]. J Cardiovasc Transl Res, 2010, 3(5): 499-506.
15
杨承志,李子健. βarrestin与β肾上腺素受体 [J]. 中国细胞生物学学报, 2012, 34(11): 1080-1088.
16
Singh M, Moniri NH. Reactive oxygen species are required for β2 adrenergic receptor-β-arrestin interactions and signaling to ERK1/2 [J]. Biochem Pharmacol, 2012, 84(5): 661.
17
Lymperopoulos A, Rengo G, Koch WJ. GRK2 inhibition in heart failure: something old, something new [J]. Curr Pharm Des, 2012, 18(2): 186-191.
18
Brinks H, Boucher M, Gao E, et al. Level of G-protein-coupled receptor kinase-2 determines myocardial ischemia/reperfusion injury via pro- and anti-apoptotic mechanisms [J]. Circ Res, 2010, 107: 1140-1149.
19
Penela P, Murga C, Ribas C, et al. The complex G protein-coupled receptor kinase 2 (GRK2) interactome unveils new physiopathological targets [J]. Br J Pharmacol, 2010, 160(4): 821-832.
20
Rengo G, Lymperopoulos A, Leosco D, et al. GRK2 as a novel gene therapy target in heart failure [J]. J Mol Cell Cardiol, 2011, 50(5): 785-792.
21
Völkers M, Weidenhammer C, Herzog N, et al. The inotropic peptide βARKct improves βAR responsiveness in normal and failing cardiomyocytes through G(βγ)-mediated L-type calcium current disinhibition [J]. Circ Res, 2011, 108(1): 27-39.
22
苗也,陈晖,李敏, 等. β肾上腺素受体激酶抑制剂对心肌梗死后心力衰竭大鼠β肾上腺素受体信号传导的影响 [J/CD]. 中华临床医师杂志(电子版), 2013, 7(24): 11441-11445.
23
马潇,陈晖,沈潞华. G蛋白偶联受体激酶2诱导心肌细胞肥大机制研究 [J]. 中国循环杂志, 2017, 32(S1): 20-21..
24
Schlegel P, Reinkober J, Meinhardt E, et al. G protein-coupled receptor kinase 2 promotes cardiac hypertrophy [J]. PLoS One, 2017, 12(7): e0182110.
25
Levin MC, Marullo S, Muntaner O, et al. The myocardium-protective Gly-49 variant of the beta 1-adrenergic receptor exhibits constitutive activity and increased desensitization and down-regulation [J]. J Biol Chem, 2002, 277(34): 30429-30435.
26
Li YJ, Li N, Yang L, et al. Polymorphisms of Arg389Gly of β1-adrenergic receptor gene and essential hypertension risk: a meta analysis [J]. Zhonghua Yi Xue Za Zhi, 2011, 91(44): 3115-3119.
27
Zhou Y, Song Y, Shaikh Z, et al. MicroRNA-155 attenuates late sepsis-induced cardiac dysfunction through JNK and β-arrestin 2 [J]. Oncotarget, 2017, 8(29): 47317-47329.
[1] 韩媛媛, 热孜亚·萨贝提, 冒智捷, 穆福娜依·艾尔肯, 陆晨, 桑晓红, 阿尔曼·木拉提, 张丽. 组合式血液净化治疗对脓毒症患者血清炎症因子水平和临床预后的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 272-278.
[2] 孟建标, 张庚, 焦燕娜. 脓毒症合并心功能障碍患者早期肠道微生态改变的探讨[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 279-285.
[3] 陈宇, 冯芳, 张露, 刘健. 基于生物信息学分析筛选脓毒症心肌病关键致病基因[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 286-291.
[4] 莫小乔, 胡喆莹, 廖冬花, 谢天. 脓毒症继发急性肾损伤患者死亡风险预测模型构建及评估[J]. 中华危重症医学杂志(电子版), 2023, 16(03): 198-206.
[5] 张晓燕, 肖东琼, 高沪, 陈琳, 唐发娟, 李熙鸿. 转录因子12过表达对脓毒症相关性脑病大鼠大脑皮质的保护作用及其机制[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 540-549.
[6] 魏徐, 张鸽, 伍金林. 新生儿脓毒症相关性凝血病的监测和治疗[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 379-386.
[7] 姚咏明. 如何精准评估烧伤脓毒症患者免疫状态[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 552-552.
[8] 窦上文, 邓欢, 刘邦锋, 岳高远志, 朱华财, 刘永达. 术前复查尿培养在预测微通道经皮肾镜取石术相关感染并发症中的作用[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 361-366.
[9] 李伟, 卓剑, 黄川, 黄有攀. Lac、HO-1、sRAGE、CRP/ALB表达及脓毒症并发ARDS危险因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 514-516.
[10] 苗软昕, 乔晞. Toll样受体在脓毒症性急性肾损伤中的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 210-214.
[11] 李世明, 黄蔚, 刘玲. HMGB1介导脓毒症相关凝血功能障碍的作用机制及其治疗进展[J]. 中华重症医学电子杂志, 2023, 09(03): 269-273.
[12] 高超, 巢杰, 邱海波. T-bet:脓毒症免疫失衡中Th17细胞的新型调节分子[J]. 中华重症医学电子杂志, 2023, 09(03): 280-285.
[13] 杨翔, 郭兰骐, 谢剑锋, 邱海波. 宏基因组二代测序在脓毒症病原体诊断中的应用进展[J]. 中华重症医学电子杂志, 2023, 09(03): 292-297.
[14] 谭睿, 王晶, 於江泉, 郑瑞强. 脓毒症中高密度脂蛋白、载脂蛋白A-I和血清淀粉样蛋白A的作用研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(06): 749-753.
[15] 蔡荇, 郑瑞强. 肝素结合蛋白在脓毒症中的应用及研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(04): 487-490.
阅读次数
全文


摘要