切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2020, Vol. 06 ›› Issue (02) : 160 -164. doi: 10.3877/cma.j.issn.2096-1537.2020.02.011

所属专题: 重症医学 文献

专题笔谈

脓毒症相关微循环障碍的研究进展
沈延飞1, 蔡国龙1,()   
  1. 1. 310030 杭州,浙江医院重症医学科
  • 收稿日期:2020-05-12 出版日期:2020-05-28
  • 通信作者: 蔡国龙
  • 基金资助:
    国家卫生健康委科学研究基金-浙江省医药卫生重大科技计划项目(WKJ-ZJ-2001); 浙江省自然科学基金(LY20H150007)

Research progress of microcirculation disorders associated with sepsis

Yanfei Shen1, Guolong Cai1,()   

  1. 1. Department of Critical Care Medicine, Zhejiang Hospital, Hangzhou 310030, China
  • Received:2020-05-12 Published:2020-05-28
  • Corresponding author: Guolong Cai
  • About author:
    Corresponding author: Cai Guolong, Email:
引用本文:

沈延飞, 蔡国龙. 脓毒症相关微循环障碍的研究进展[J]. 中华重症医学电子杂志, 2020, 06(02): 160-164.

Yanfei Shen, Guolong Cai. Research progress of microcirculation disorders associated with sepsis[J]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2020, 06(02): 160-164.

维持大循环灌注是脓毒症复苏过程中重要目标之一,但临床过程中,大循环-微循环失耦联状态并不少见,即大循环已处于稳态,但微循环仍存在障碍。若不能及早识别干预失耦联状态,往往导致器官功能障碍等不良事件发生。因此,如何合理地监测微循环在脓毒症治疗中显得尤为重要。本文旨在对脓毒症中微循环障碍的发生、发展以及监测方法作一简要综述。

Maintaining generalorgan perfusion is one of the important goals in the fluid resuscitation of sepsis. However, macrocirculation-microcirculation miscouple is quite common in clinical practice: even the generalorgan perfusion is well maintained, the microcirculation disorder are still common in sepsis, which may lead to subsequent organ dysfunction. Therefore, how to monitor microcirculation is particularly important in the treatment of sepsis. The occurrence, development and monitoring of microcirculation disorder in sepsis were reviewed in this article.

1
Vincent JL, Opal SM, Marshall JC, et al. Sepsis definitions: time for change[J]. Lancet, 2013, 381(9868): 774-775.
2
Serpa Neto A, Cardoso SO, Ong DS, et al. The use of the pulse oximetric saturation/fraction of inspired oxygen ratio for risk stratification of patients with severe sepsis and septic shock[J]. Journal of Critical Care, 2013, 28(5):681-686.
3
Zhang Z, Zhang Z, Xue Y, et al. Prognostic value of B-type natriuretic peptide (BNP) and its potential role in guiding fluid therapy in critically ill septic patients[J]. Scand J Trauma Resusc Emerg Med, 2012, 20: 86.
4
Dellinger RP, Carlet JM, Masur H, et al. Surviving Sepsis Campaign guidelines for management of severe sepsis and septic shock[J]. Crit Care Med, 2004, 32(3): 858-873.
5
De Backer D, Donadello K, Sakr Y, et al. Microcirculatory alterations in patients with severe sepsis: impact of time of assessment and relationship with outcome[J]. Critical Care Medicine, 2013, 41(3): 791-799.
6
Ince C. Hemodynamic coherence and the rationale for monitoring the microcirculation[J]. Crit Care, 2015, 19 (Suppl 3): S8.
7
De Backer D, Creteur J, Preiser JC, et al. Microvascular blood flow is altered in patients with sepsis[J]. Am J Respir Crit Care Med, 2002, 166(1): 98-104.
8
Sakr Y, Dubois MJ, De Backer D, et al. Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock[J]. Critical Care Medicine, 2004, 32(9): 1825-1831.
9
Trzeciak S, Dellinger RP, Parrillo JE, et al. Early microcirculatory perfusion derangements in patients with severe sepsis and septic shock: relationship to hemodynamics, oxygen transport, and survival[J]. Ann Emerg Med, 2007, 49(1): 88-98, e81-82.
10
Trzeciak S, McCoy JV, Phillip Dellinger R, et al. Early increases in microcirculatory perfusion during protocol-directed resuscitation are associated with reduced multi-organ failure at 24 h in patients with sepsis[J]. Intensive Care Medicine, 2008, 34(12): 2210-2217.
11
Dubin A, Pozo MO, Casabella CA, et al. Increasing arterial blood pressure with norepinephrine does not improve microcirculatory blood flow: a prospective study[J]. Crit Care, 2009, 13(3): R92.
12
Boerma EC, Koopmans M, Konijn A, et al. Effects of nitroglycerin on sublingual microcirculatory blood flow in patients with severe sepsis/septic shock after a strict resuscitation protocol: a double-blind randomized placebo controlled trial[J]. Critical Care Medicine, 2010, 38(1): 93-100.
13
Bakker J. Lactate levels and hemodynamic coherence in acute circulatory failure[J]. Best Pract Res Clin Anaesthesiol, 2016, 30(4): 523-530.
14
Sekino M, Funaoka H, Sato S, et al. Association Between Macroscopic Tongue Ischemia and Enterocyte Injury and Poor Outcome in Patients With Septic Shock: A Preliminary Observational Study[J]. Shock, 2018, 50(5): 530-537.
15
Ait-Oufella H, Bourcier S, Lehoux S, et al. Microcirculatory disorders during septic shock[J]. Curr Opin Crit Care, 2015, 21(4): 271-275.
16
Ratiani L, Gamkrelidze M, Khuchua E, et al. Altered Microcirculation in Septic Shock[J]. Georgian Med News, 2015(244-245): 16-24.
17
Mutunga M, Fulton B, Bullock R, et al. Circulating endothelial cells in patients with septic shock[J]. Am J Respir Crit Care Med, 2001, 163(1): 195-200.
18
Sessler CN, Windsor AC, Schwartz M, et al. Circulating ICAM-1 is increased in septic shock[J]. Am J Respir Crit Care Med, 1995, 151(5): 1420-1427.
19
Levi M, van der Poll T, Buller HR. Bidirectional relation between inflammation and coagulation[J]. Circulation, 2004, 109(22): 2698-2704.
20
Lima A, Bakker J. Clinical assessment of peripheral circulation[J]. Curr Opin Crit Care, 2015, 21(3): 226-231.
21
Hernandez G, Bruhn A, Castro R, et al. The holistic view on perfusion monitoring in septic shock[J]. Curr Opin Crit Care, 2012, 18(3): 280-286.
22
Lima A, Jansen TC, van Bommel J, et al. The prognostic value of the subjective assessment of peripheral perfusion in critically ill patients[J]. Critical Care Medicine, 2009, 37(3): 934-938.
23
Hernandez G, Pedreros C, Veas E, et al. Evolution of peripheral vs metabolic perfusion parameters during septic shock resuscitation. A clinical-physiologic study[J]. Journal of Critical Care, 2012, 27(3): 283-288.
24
Ait-Oufella H, Bige N, Boelle PY, Pichereau C, et al. Capillary refill time exploration during septic shock[J]. Intensive Care Medicine, 2014, 40(7): 958-964.
25
Hernandez G, Luengo C, Bruhn A, et al. When to stop septic shock resuscitation: clues from a dynamic perfusion monitoring[J]. Ann Intensive Care, 2014, 4: 30.
26
Qian J, Yang Z, Cahoon J, et al. Post-resuscitation intestinal microcirculation: its relationship with sublingual microcirculation and the severity of post-resuscitation syndrome[J]. Resuscitation, 2014, 85(6): 833-839.
27
Rovas A, Lukasz AH, Vink H, et al. Bedside analysis of the sublingual microvascular glycocalyx in the emergency room and intensive care unit-the GlycoNurse study[J]. Scand J Trauma Resusc Emerg Med, 2018, 26(1): 16.
28
Gilbert-Kawai E, Coppel J, Bountziouka V, et al. A comparison of the quality of image acquisition between the incident dark field and sidestream dark field video-microscopes[J]. BMC Med Imaging, 2016, 16: 10.
29
Hildebrandt W, Schwarzbach H, Pardun A, et al. Age-related differences in skeletal muscle microvascular response to exercise as detected by contrast-enhanced ultrasound (CEUS)[J]. PloS one, 2017, 12(3): e0172771.
30
Diana M, Dallemagne B, Chung H, , et al. Probe-based confocal laser endomicroscopy and fluorescence-based enhanced reality for real-time assessment of intestinal microcirculation in a porcine model of sigmoid ischemia[J]. Surg Endosc, 2014, 28(11): 3224-3233.
[1] 韩媛媛, 热孜亚·萨贝提, 冒智捷, 穆福娜依·艾尔肯, 陆晨, 桑晓红, 阿尔曼·木拉提, 张丽. 组合式血液净化治疗对脓毒症患者血清炎症因子水平和临床预后的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 272-278.
[2] 孟建标, 张庚, 焦燕娜. 脓毒症合并心功能障碍患者早期肠道微生态改变的探讨[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 279-285.
[3] 陈宇, 冯芳, 张露, 刘健. 基于生物信息学分析筛选脓毒症心肌病关键致病基因[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 286-291.
[4] 莫小乔, 胡喆莹, 廖冬花, 谢天. 脓毒症继发急性肾损伤患者死亡风险预测模型构建及评估[J]. 中华危重症医学杂志(电子版), 2023, 16(03): 198-206.
[5] 张晓燕, 肖东琼, 高沪, 陈琳, 唐发娟, 李熙鸿. 转录因子12过表达对脓毒症相关性脑病大鼠大脑皮质的保护作用及其机制[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 540-549.
[6] 魏徐, 张鸽, 伍金林. 新生儿脓毒症相关性凝血病的监测和治疗[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 379-386.
[7] 姚咏明. 如何精准评估烧伤脓毒症患者免疫状态[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 552-552.
[8] 窦上文, 邓欢, 刘邦锋, 岳高远志, 朱华财, 刘永达. 术前复查尿培养在预测微通道经皮肾镜取石术相关感染并发症中的作用[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 361-366.
[9] 李伟, 卓剑, 黄川, 黄有攀. Lac、HO-1、sRAGE、CRP/ALB表达及脓毒症并发ARDS危险因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 514-516.
[10] 苗软昕, 乔晞. Toll样受体在脓毒症性急性肾损伤中的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 210-214.
[11] 高超, 巢杰, 邱海波. T-bet:脓毒症免疫失衡中Th17细胞的新型调节分子[J]. 中华重症医学电子杂志, 2023, 09(03): 280-285.
[12] 杨翔, 郭兰骐, 谢剑锋, 邱海波. 宏基因组二代测序在脓毒症病原体诊断中的应用进展[J]. 中华重症医学电子杂志, 2023, 09(03): 292-297.
[13] 胡霁云, 谢树才, 张丽娜. S100钙结合蛋白B与重症神经研究进展[J]. 中华重症医学电子杂志, 2023, 09(03): 298-303.
[14] 谭睿, 王晶, 於江泉, 郑瑞强. 脓毒症中高密度脂蛋白、载脂蛋白A-I和血清淀粉样蛋白A的作用研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(06): 749-753.
[15] 蔡荇, 郑瑞强. 肝素结合蛋白在脓毒症中的应用及研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(04): 487-490.
阅读次数
全文


摘要