1 |
Vincent JL, Opal SM, Marshall JC, et al. Sepsis definitions: time for change[J]. Lancet, 2013, 381(9868): 774-775.
|
2 |
Serpa Neto A, Cardoso SO, Ong DS, et al. The use of the pulse oximetric saturation/fraction of inspired oxygen ratio for risk stratification of patients with severe sepsis and septic shock[J]. Journal of Critical Care, 2013, 28(5):681-686.
|
3 |
Zhang Z, Zhang Z, Xue Y, et al. Prognostic value of B-type natriuretic peptide (BNP) and its potential role in guiding fluid therapy in critically ill septic patients[J]. Scand J Trauma Resusc Emerg Med, 2012, 20: 86.
|
4 |
Dellinger RP, Carlet JM, Masur H, et al. Surviving Sepsis Campaign guidelines for management of severe sepsis and septic shock[J]. Crit Care Med, 2004, 32(3): 858-873.
|
5 |
De Backer D, Donadello K, Sakr Y, et al. Microcirculatory alterations in patients with severe sepsis: impact of time of assessment and relationship with outcome[J]. Critical Care Medicine, 2013, 41(3): 791-799.
|
6 |
Ince C. Hemodynamic coherence and the rationale for monitoring the microcirculation[J]. Crit Care, 2015, 19 (Suppl 3): S8.
|
7 |
De Backer D, Creteur J, Preiser JC, et al. Microvascular blood flow is altered in patients with sepsis[J]. Am J Respir Crit Care Med, 2002, 166(1): 98-104.
|
8 |
Sakr Y, Dubois MJ, De Backer D, et al. Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock[J]. Critical Care Medicine, 2004, 32(9): 1825-1831.
|
9 |
Trzeciak S, Dellinger RP, Parrillo JE, et al. Early microcirculatory perfusion derangements in patients with severe sepsis and septic shock: relationship to hemodynamics, oxygen transport, and survival[J]. Ann Emerg Med, 2007, 49(1): 88-98, e81-82.
|
10 |
Trzeciak S, McCoy JV, Phillip Dellinger R, et al. Early increases in microcirculatory perfusion during protocol-directed resuscitation are associated with reduced multi-organ failure at 24 h in patients with sepsis[J]. Intensive Care Medicine, 2008, 34(12): 2210-2217.
|
11 |
Dubin A, Pozo MO, Casabella CA, et al. Increasing arterial blood pressure with norepinephrine does not improve microcirculatory blood flow: a prospective study[J]. Crit Care, 2009, 13(3): R92.
|
12 |
Boerma EC, Koopmans M, Konijn A, et al. Effects of nitroglycerin on sublingual microcirculatory blood flow in patients with severe sepsis/septic shock after a strict resuscitation protocol: a double-blind randomized placebo controlled trial[J]. Critical Care Medicine, 2010, 38(1): 93-100.
|
13 |
Bakker J. Lactate levels and hemodynamic coherence in acute circulatory failure[J]. Best Pract Res Clin Anaesthesiol, 2016, 30(4): 523-530.
|
14 |
Sekino M, Funaoka H, Sato S, et al. Association Between Macroscopic Tongue Ischemia and Enterocyte Injury and Poor Outcome in Patients With Septic Shock: A Preliminary Observational Study[J]. Shock, 2018, 50(5): 530-537.
|
15 |
Ait-Oufella H, Bourcier S, Lehoux S, et al. Microcirculatory disorders during septic shock[J]. Curr Opin Crit Care, 2015, 21(4): 271-275.
|
16 |
Ratiani L, Gamkrelidze M, Khuchua E, et al. Altered Microcirculation in Septic Shock[J]. Georgian Med News, 2015(244-245): 16-24.
|
17 |
Mutunga M, Fulton B, Bullock R, et al. Circulating endothelial cells in patients with septic shock[J]. Am J Respir Crit Care Med, 2001, 163(1): 195-200.
|
18 |
Sessler CN, Windsor AC, Schwartz M, et al. Circulating ICAM-1 is increased in septic shock[J]. Am J Respir Crit Care Med, 1995, 151(5): 1420-1427.
|
19 |
Levi M, van der Poll T, Buller HR. Bidirectional relation between inflammation and coagulation[J]. Circulation, 2004, 109(22): 2698-2704.
|
20 |
Lima A, Bakker J. Clinical assessment of peripheral circulation[J]. Curr Opin Crit Care, 2015, 21(3): 226-231.
|
21 |
Hernandez G, Bruhn A, Castro R, et al. The holistic view on perfusion monitoring in septic shock[J]. Curr Opin Crit Care, 2012, 18(3): 280-286.
|
22 |
Lima A, Jansen TC, van Bommel J, et al. The prognostic value of the subjective assessment of peripheral perfusion in critically ill patients[J]. Critical Care Medicine, 2009, 37(3): 934-938.
|
23 |
Hernandez G, Pedreros C, Veas E, et al. Evolution of peripheral vs metabolic perfusion parameters during septic shock resuscitation. A clinical-physiologic study[J]. Journal of Critical Care, 2012, 27(3): 283-288.
|
24 |
Ait-Oufella H, Bige N, Boelle PY, Pichereau C, et al. Capillary refill time exploration during septic shock[J]. Intensive Care Medicine, 2014, 40(7): 958-964.
|
25 |
Hernandez G, Luengo C, Bruhn A, et al. When to stop septic shock resuscitation: clues from a dynamic perfusion monitoring[J]. Ann Intensive Care, 2014, 4: 30.
|
26 |
Qian J, Yang Z, Cahoon J, et al. Post-resuscitation intestinal microcirculation: its relationship with sublingual microcirculation and the severity of post-resuscitation syndrome[J]. Resuscitation, 2014, 85(6): 833-839.
|
27 |
Rovas A, Lukasz AH, Vink H, et al. Bedside analysis of the sublingual microvascular glycocalyx in the emergency room and intensive care unit-the GlycoNurse study[J]. Scand J Trauma Resusc Emerg Med, 2018, 26(1): 16.
|
28 |
Gilbert-Kawai E, Coppel J, Bountziouka V, et al. A comparison of the quality of image acquisition between the incident dark field and sidestream dark field video-microscopes[J]. BMC Med Imaging, 2016, 16: 10.
|
29 |
Hildebrandt W, Schwarzbach H, Pardun A, et al. Age-related differences in skeletal muscle microvascular response to exercise as detected by contrast-enhanced ultrasound (CEUS)[J]. PloS one, 2017, 12(3): e0172771.
|
30 |
Diana M, Dallemagne B, Chung H, , et al. Probe-based confocal laser endomicroscopy and fluorescence-based enhanced reality for real-time assessment of intestinal microcirculation in a porcine model of sigmoid ischemia[J]. Surg Endosc, 2014, 28(11): 3224-3233.
|