切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2021, Vol. 07 ›› Issue (02) : 142 -148. doi: 10.3877/cma.j.issn.2096-1537.2021.02.009

临床研究

红细胞分布宽度对ICU急性呼吸衰竭患者预后的评估
马德胜1, 马莉1,(), 张欣桐1, 刘景卓1, 李盼1   
  1. 1. 730030 兰州大学第二医院重症医学三科
  • 收稿日期:2021-01-04 出版日期:2021-05-28
  • 通信作者: 马莉

The prognostic value of red blood cell distribution width in patients with acute respiratory failure in intensive care unit

Desheng Ma1, Li Ma1(), Xintong Zhang1, Jingzhuo Liu1, Pan Li1   

  1. 1. Department of Intensive Care Unit, the Second Hospital of Lanzhou University, Lanzhou 730030, China
  • Received:2021-01-04 Published:2021-05-28
  • Corresponding author: Li Ma
引用本文:

马德胜, 马莉, 张欣桐, 刘景卓, 李盼. 红细胞分布宽度对ICU急性呼吸衰竭患者预后的评估[J]. 中华重症医学电子杂志, 2021, 07(02): 142-148.

Desheng Ma, Li Ma, Xintong Zhang, Jingzhuo Liu, Pan Li. The prognostic value of red blood cell distribution width in patients with acute respiratory failure in intensive care unit[J]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2021, 07(02): 142-148.

目的

探讨红细胞分布宽度(RDW)对急性呼吸衰竭(ARF)患者预后的评估价值。

方法

提取来源于MIMIC-Ⅲ数据库的数据,根据国际ICD9-CODE诊断编码,查询ARF患者相关信息。用SQL语言提取患者的一般资料、并发症、评分、实验室检查结果等,并以患者28 d病死率、90 d病死率为主要指标,ICU病死率、院内病死率、入ICU时间和院内时间为次要指标。所有研究对象根据受试者工作特征曲线(ROC)最佳截断值分为高RDW组和正常RDW组,比较2组患者的基线数据及临床结局,采用Kaplan-Meier生存曲线分析2组患者28 d、90 d的累积生存率,Cox比例风险回归模型分析ARF患者28 d、90 d的死亡风险,并计算ROC的曲线下面积(AUC)。

结果

共纳入6286例ARF的患者,正常RDW组和高RDW组28 d病死率分别为21.3%、33.7%,90 d病死率分别为27.8%、44.8%,倾向性评分匹配(PSM)后2组28 d病死率分别为25.9%、31.9%,90 d病死率分别为33.5%、43.1%,组间比较差异均有统计学意义(P<0.001);进行累积生存分析时发现,高RDW组28 d和90 d的累积生存率较正常RDW组均明显降低,差异有统计学意义(P<0.001);采用Cox比例风险回归模型进行分析,RDW每升高1%,ARF患者28 d、90 d的死亡风险显著增加。在28 d病死率预测价值上,RDW、序贯器官衰竭评估(SOFA)评分的ROC的AUC无明显差异(0.663 vs 0.662,P=0.926),但在90 d病死率上,RDW的ROC的AUC高于SOFA评分,差异有统计学意义(0.678 vs 0.651,P=0.003)。

结论

RDW升高可能是ARF患者预后的一个有价值的指标。

Objective

To evaluate the prognostic value of red blood cell distribution width (RDW) in patients with acute respiratory failure.

Methods

Data of patients with acute respiratory failure according to the international ICD9-CODE diagnostic code was extracted from MIMIC Ⅲ database. Demographic data, combordities, laboratory results, SOFA score were collected. The primary outcome were the 28-day and 90-day mortality. Secondary outcome included ICU mortality, in-hospital mortality, length of ICU stay and length of hospital stay. All subjects were divided into the high RDW group and the normal RDW group according to the best ROC cutoff value. The baseline and clinical outcomes of the two groups were compared. Kaplan-Meier survival curve was used to analyze the cumulative survival rate at 28 days and 90 days in the two groups. Cox proportional hazard regression model was used to analyze the mortality risk of patients with acute respiratory failure at 28 days and 90 days. The area under the receiver operating characteristic (ROC) was also calculated.

Results

A total of 6286 patients with acute respiratory failure were incluced into final analysis. Compared with normal RDW group, the mortality rate at 28 day (21.3% vs 33.7%, P<0.001) and 90 day (27.8% vs 44.8, P<0.001) were significant higher in high RDW group. After propensity score matched (PSM) similar results were found in 28-day mortality rate (25.9% vs 31.9%, P<0.001) and 90-day mortality rate (33.5% vs 43.1%, P<0.001) . The cumulative survival analysis revealed that the mortality rate was significant higher in high RDW group. Cox proportional hazards regression model analysis showed that RDW was significant associated with 28- and 90-day mortality in patients with acute respiratory failure. There was no significant difference of the area under ROC curve between RDW and SOFA in prediction value of 28-day mortality (0.663 vs 0.662, P=0.926). However, RDW performed a better predictive value than SOFA score on the 90-day mortality (0.678 vs 0.651, P=0.003).

Conclusion

RDW may be a valuable prognostic indicator in patients with acute respiratory failure.

表1 原始组和PSM组患者基线资料比较
基线资料 原始组 PSM组 统计值 P
正常RDW组(4075例) 高RDW组(2211例) 正常RDW组(1850例) 高RDW组(1850例) 原始组 PSM组 原始组 PSM组
性别[男,例(%)] 2295(56.3) 1161(52.5) 983(53.1) 992(53.6) χ2=8.400 χ2=0.088 0.004 0.767
年龄(岁,
x¯
±s
62.81±16.74 64.15±14.62 64.42±15.99 64.36±14.70 t=3.162 t=0.109 0.001 0.913
入院类型[例(%)] χ2=11.438 χ2=5.235 0.003 0.073
择期入院 250(6.1) 109(4.9) 75(4.0) 100(5.4)
急诊入院 3725(91.5) 2020(91.4) 1724(93.1) 1687(91.2)
紧急入院 100(2.4) 82(3.7) 51(2.7) 63(3.4)
监护室类型[例(%)] χ2=76.704 χ2=21.410 <0.001 0.763
CCU 549(13.5) 226(10.2) 251(13.6) 198(10.7)
CSRU 258(6.3) 99(4.4) 100(5.4) 86(4.6)
MICU 2271(55.7) 1468(66.4) 1085(58.6) 1214(65.6)
SICU 603(14.8) 289(13.1) 258(13.9) 236(12.7)
TSICU 394(9.7) 129(5.9) 156(8.4) 116(6.3)
生命体征
心率(次/分,
x¯
±s
89.06±16.67 90.10±17.20 90.52±17.32 90.11±17.23 t=2.326 t=0.707 0.020 0.479
呼吸(次/分,
x¯
±s
20.20±4.63 20.67±4.56 20.77±4.82 20.66±4.53 t=3.857 t=0.716 <0.001 0.474
体温(℃,
x¯
±s
36.94±0.76 36.76±0.75 36.83±0.82 36.82±0.74 t=8.654 t=0.256 <0.001 0.797
氧饱和度(%,
x¯
±s
96.78±3.65 96.63±3.68 96.71±3.39 96.69±3.22 t=1.554 t=0.190 0.120 0.849
实验室检查
白细胞(×109
x¯
±s
11.65±5.53 12.33±5.73 11.75±6.26 11.64±6.64 t=2.483 t=0.517 0.013 0.604
血小板(×109
x¯
±s
262.65±111.82 217.45±135.52 236.23±108.60 229.78±130.00 t=14.31 t=1.375 <0.001 0.168
血肌酐(mg/dl,
x¯
±s
1.36±1.21 1.83±1.57 1.69±1.49 1.73±1.48 t=13.317 t=0.302 <0.001 0.762
血乳酸(mmol/L,
x¯
±s
2.32±2.19 2.59±2.57 2.42±2.26 2.43±2.27 t=3.653 t=0.104 <0.001 0.916
并发症[例(%)]
充血性心力衰竭 960(23.5) 703(31.7) 576(31.1) 557(30.1) χ2=49.985 χ2=0.459 <0.001 0.498
心律失常 934(22.9) 616(27.8) 516(27.8) 498(26.9) χ2=18.831 χ2=0.440 <0.001 0.507
高血压 423(10.3) 407(18.4) 304(16.4) 293(15.8) χ2=80.595 χ2=0.241 <0.001 0.623
肺循环疾病 210(5.2) 181(8.1) 124(6.8) 125(6.7) χ2=22.603 χ2=0.004 <0.001 0.948
慢性肺部疾病 1083(26.5) 579(26.1) 498(26.9) 506(27.3) χ2=0.111 χ2=0.087 0.738 0.767
肾衰竭 496(12.1) 520(23.5) 384(20.7) 360(19.4) χ2=136.190 χ2=0.969 <0.001 0.325
肝脏疾病 253(6.2) 327(14.7) 204(11.0) 192(10.3) χ2=126.013 χ2=0.407 <0.001 0.523
评分[分,MQ25Q75)]
SOFA 5(2,7) 6(4,9) 6(3,9) 6(3,8) Z=14.692 Z=0.836 <0.001 0.825
GCS 15(14,15) 15(14,15) 15(14,15) 15(14,15) Z=0.784 Z=0.070 0.433 0.474
LODS 5(3,7) 6(4,8) 5(3,8) 6(3,8) Z=11.833 Z=0.692 <0.001 0.930
OASIS 36(30,42) 37(31,43) 37(31,44) 37(31,43) Z=3.230 Z=1.348 0.001 0.154
SAPSⅡ 39(29,49) 44(34,55) 43(33,55) 42(33,53) Z=12.804 Z=0.800 <0.001 0.405
表2 不同RDW分组临床结局比较
图1 2组ARF患者28 d累计生存曲线
图2 2组ARF患者90 d累计生存曲线
表3 Cox比例风险回归模型与临床结局
图3 RDW、SOFA、SAPS Ⅱ预测患者28 d死亡的ROC曲线
图4 RDW、SOFA、SAPS Ⅱ预测患者90 d死亡的ROC曲线
1
Urrechaga E, Hoffmann J. Critical appraisal of discriminant formulas for distinguishing thalassemia from iron deficiency in patients with microcytic anemia [J]. Clin Chem Lab Med, 2017, 55(10): 1582-1591.
2
Bekler A, Tenekecioğlu E, Erbağ G, et al. Relationship between red cell distribution width and long-term mortality in patients with non-ST elevation acute coronary syndrome [J]. Anatol J Cardiol, 2015, 15(8): 634-639.
3
Wang BJ, Aihemaiti G, Cheng BH, et al. Red blood cell distribution width is associated with all-cause mortality in critically ill patients with cardiogenic shock [J]. Med Sci Monit, 2019, 25(9): 7005-7015.
4
Özdoğan HK, Karateke F, Özyazıcı S, et al. The predictive value of red cell distribution width levels on mortality in intensive care patients with community-acquired intra-abdominal sepsis [J]. Ulus Travma Acil Cerrahi Derg, 2015, 21(5): 352-357.
5
O'Connell RM, Boland MR, O'Driscoll J, et al. Red cell distribution width and neutrophil to lymphocyte ratio as predictors of outcomes in acute pancreatitis: A retrospective cohort study [J]. Int J Surg, 2018, 55(5): 124-127.
6
Yalçın MS, Tas A, Kara B, et al. New predictor of acute necrotizing pancreatitis: Red cell distribution width. [J]. Adv Clin Exp Med, 2018, 27(2): 225-228.
7
Ma W, Mao SY, Bao MY, et al. Prognostic significance of red cell distribution width in bladder cancer [J]. Transl Androl Urol, 2020, 9(2): 295-302.
8
Bello S, Fandos S, Lasierra AB, et al. Red blood cell distribution width [RDW] and long-term mortality after community-acquired pneumonia. A comparison with proadrenomedullin [J]. Respir Med, 2015, 109(9): 1193-1206.
9
Akgedik R, Karamanli H, Kurt AB, et al. Usefulness of admission red blood cell distribution width as a predictor of severity of acute pulmonary embolism [J].Clin Respir J, 2018, 12(2): 786-794.
10
Łochowski M, Chałubiska-Fendler J, Łochowska B, et al. Prognostic value of red blood cell distribution width-standard deviation (RDW-SD) in patients operated on due to non-small cell lung cancer [J]. J Thorac Dis, 2020, 12(3): 773-781.
11
Johnson AE, Pollard TJ, Shen L, et al. MIMIC-Ⅲ, a freely accessible critical care database [J]. Sci Data, 2016, 3: 160035.
12
Huang YL, Badrick T, Hu ZD. Using freely accessible databases for laboratory medicine research: experience with MIMIC database [J]. J Lab Precis Med, 2017, 2: 31.
13
Salvagno GL, Sanchis-Gomar F, Picanza A, et al. Red blood cell distribution width: A simple parameter with multiple clinical applications [J]. Crit Rev Clin Lab Sci, 2015, 52(2): 86-105.
14
Chepens T, De DJ,Verbrugghe W, et al. Red cell distribution width (RDW) as a biomarker for respiratory failure in a pediatric ICU [J]. J Inflamm (Lond), 2017, 14: 12.
15
Kim CH, Park JT, Kim EJ, et al. An increase in red blood cell distribution width from baseline predicts mortality in patients with severe sepsis or septic shock [J]. Crit Care, 2013, 17(6): R282.
16
Jo YH, Kim K, Lee JH, et al. Red cell distribution width is a prognostic factor in severe sepsis and septic shock [J]. Am J Emerg Med, 2013, 31(3): 545-548.
17
Jia LP, Cui SJ, Yang JY, et al. Red blood cell distribution width predicts long-term mortality in critically ill patients with acute kidney injury: a retrospective database study [J]. Sci Rep, 2020, 10(1): 4563.
18
Han YQ, Zhang L, Yan L, et al. Red blood cell distribution width predicts long-term outcomes in sepsis patients admitted to the intensive care unit [J]. Clin Chim Acta, 2018, 487: 112-116.
19
Kim YC, Song JE, Kim EJ, et al. A simple scoring system using the red blood cell distribution width, delta neutrophil index, and platelet count to predict mortality in patients with severe sepsis and septic shock [J]. J Intensive Care Med, 2019, 34: 133-139.
20
Huda AQ, Karim MR, Mahmud MA, et al. Use of acute physiology and chronic health evaluation (APACHE)-Ⅱ and red cell distribution width (RDW) for assessment of mortality of patients with sepsis in ICU [J]. Mymensingh Med J, 2017, 26(3): 585-591.
21
Zhang FX, Li ZL, Zhang ZD, et al. Prognostic value of red blood cell distribution width for severe acute pancreatitis [J]. World J Gastroenterol, 2019, 25(32): 4739-4748.
22
Adaka F, O'Brien J, Prakash S. Red cell distribution width and outcome in patients with septic shock [J]. J Intensive Care Med, 2013, 28(5): 307-313.
23
Han YQ, Yan L, Zhang L, et al. Red blood cell distribution width provides additional prognostic value beyond severity scores in adult critical illness [J]. Clin Chim Acta, 2019, 498: 62-67.
24
Arhan M, Onal IK, Tas A, et al. The role of red cell distribution width as a marker in inflammatory bowel disease [J]. Turk J Med Sci, 2011, 41(1): 227-234.
25
Semba RD, Patel KV, Ferrucci L, et al. Serum antioxidants and inflammation predict red cell distribution width in older women: the women's health and aging study Ⅰ [J]. Clin Nutr, 2010, 29(5): 600-604.
26
Förhécz Z, Gombos T, Borgulya G, et al. Red cell distribution width in heart failure: prediction of clinical events and relationship with markers of ineffective erythropoiesis, inflammation, renal function, and nutritional state [J]. Am Heart J, 2009, 158(4): 659-666.
27
Ghaffari S. Oxidative stress in the regulation of normal and neoplastic hematopoiesis [J]. Antioxid Redox Signal, 2008, 10(11): 1923-1940.
28
Caimi G, Montana M, Canino B, et al. Erythrocyte deformability, plasma lipid peroxidation and plasma protein oxidation in a group of OSAS subjects [J]. Clin Hemorheol Microcirc, 2016, 64(1): 7-14.
29
Joseph PR, Rajarathnam K. Solution NMR characterization of WT CXCL8 monomer and dimer binding to CXCR1 N-terminal domain [J]. Protein Sci, 2015, 24(1): 81-92.
[1] 林晶, 陈佳龙, 吴淡森, 李秀华, 郭潇岚, 石松菁. 电阻抗断层显像导向呼气末正压滴定对急性呼吸窘迫综合征/急性呼吸衰竭患者影响的Meta分析[J]. 中华危重症医学杂志(电子版), 2021, 14(03): 226-231.
[2] 胡马洪, 孟建标, 焦燕娜, 赖志珍, 刘梅, 庞丽莎, 徐敏荣, 张微, 王铁钧, 张庚. 布托啡诺与丙泊酚对急性呼吸衰竭行无创机械通气躁动患者镇静作用的比较研究[J]. 中华危重症医学杂志(电子版), 2020, 13(03): 188-194.
[3] 高兰, 李昊, 刘红娟, 闫晋琪, 石秦东. 尿酸联合红细胞分布宽度对脓毒症患者短期结局的预测价值[J]. 中华危重症医学杂志(电子版), 2019, 12(06): 367-371.
[4] 李兆明, 章颖, 刘先进. 血小板计数、红细胞分布宽度对急性戊型肝炎肝衰竭患者预后的预测价值[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(05): 307-314.
[5] 林金锋, 张素燕, 田李均, 曹志龙, 徐俊贤, 韩旭东. 短暂呼气末阻塞法用于指导机械通气患者撤机的临床分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 266-268.
[6] 冯芸, 刘娟, 周圣哲, 程绩. 俯卧位通气时间对急性呼吸窘迫综合征病死率影响的Meta分析[J]. 中华肺部疾病杂志(电子版), 2020, 13(04): 524-526.
[7] 何迎盈, 陈兆红, 赵雷, 张友才. 重组人白细胞介素-11导致急性呼吸衰竭11例[J]. 中华肺部疾病杂志(电子版), 2019, 12(02): 251-253.
[8] 吴晓燕, 严凤娣, 殷静静, 於江泉, 郑瑞强. 神经电活动辅助通气和压力支持通气对呼吸衰竭患者呼吸形式的影响[J]. 中华重症医学电子杂志, 2021, 07(02): 120-125.
[9] 陈栋玉, 何磊, 周亮亮, 吴艳, 张超青, 邓义军. 有创机械通气-高流量氧疗序贯治疗慢性阻塞性肺疾病所致急性呼吸衰竭的临床研究[J]. 中华重症医学电子杂志, 2019, 05(03): 219-224.
[10] 潘纯, 许媛, 杨毅. 高流量鼻导管氧疗治疗食道癌术后呼吸衰竭一例[J]. 中华重症医学电子杂志, 2019, 05(02): 203-206.
[11] 梁玉兰, 陈亮, 曾令梅. NLR、RDW水平联合振幅整合脑电图在缺氧缺血性脑病患儿的预后研究[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(02): 84-89.
[12] 吉茜茜, 田尧, 马林, 钱进. 红细胞分布宽度-白蛋白比值联合BISAP评分对急性胰腺炎严重程度及死亡率的预测价值[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 433-438.
[13] 张敏, 王佐英, 吴海英, 刘蕊, 李拉拉, 陈光平, 曾莲, 赵东英, 刘微. 红细胞分布宽度与慢性心力衰竭预后的临床观察[J]. 中华临床医师杂志(电子版), 2021, 15(01): 43-46.
[14] 李新叶, 陆元奉, 唐慧荷, 石丰浪, 郑凯元, 杨益梅, 代艳. 红细胞分布宽度在儿童过敏性紫癜中的临床价值[J]. 中华临床医师杂志(电子版), 2019, 13(01): 7-12.
[15] 刘恒均, 王军, 徐莎, 徐鹏. 红细胞分布宽度评估脓毒症患者预后的价值[J]. 中华卫生应急电子杂志, 2023, 09(02): 80-84.
阅读次数
全文


摘要