切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2021, Vol. 07 ›› Issue (02) : 120 -125. doi: 10.3877/cma.j.issn.2096-1537.2021.02.005

临床研究

神经电活动辅助通气和压力支持通气对呼吸衰竭患者呼吸形式的影响
吴晓燕1, 严凤娣1, 殷静静1, 於江泉1, 郑瑞强1,()   
  1. 1. 225001 扬州,江苏省苏北人民医院重症医学科
  • 收稿日期:2021-02-03 出版日期:2021-05-28
  • 通信作者: 郑瑞强
  • 基金资助:
    江苏省青年医学人才项目(2016-2020); 江苏省扬州市“十三五”科教强卫重点人才项目(ZDRC20181); 江苏省社会发展重点专项项目(BE2017691)

Effect of neurally adjusted ventilatory assist and pressure support ventilation on respiratory pattern of patients with acute respiratory failure

Xiaoyan Wu1, Fengdi Yan1, Jingjing Yin1, Jiangquan Yu1, Ruiqiang Zheng1()   

  1. 1. Department of Critical Care Medicine, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou 225001, China
  • Received:2021-02-03 Published:2021-05-28
  • Corresponding author: Ruiqiang Zheng
引用本文:

吴晓燕, 严凤娣, 殷静静, 於江泉, 郑瑞强. 神经电活动辅助通气和压力支持通气对呼吸衰竭患者呼吸形式的影响[J]. 中华重症医学电子杂志, 2021, 07(02): 120-125.

Xiaoyan Wu, Fengdi Yan, Jingjing Yin, Jiangquan Yu, Ruiqiang Zheng. Effect of neurally adjusted ventilatory assist and pressure support ventilation on respiratory pattern of patients with acute respiratory failure[J]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2021, 07(02): 120-125.

目的

观察神经电活动辅助通气(NAVA)和压力支持通气(PSV)对急性呼吸衰竭患者呼吸形式的影响。

方法

以2018年1月至2019年6月入住苏北人民医院ICU的12例急性呼吸衰竭行机械通气患者为研究对象,随机选择NAVA或PSV模式进行通气,NAVA和PSV通气支持水平均从5 cmH2O(1 cmH2O=0.098 kPa)开始,分4步递增,每10 min增加1次。PSV压力支持水平分别为5、10、15、20 cmH2O,分别记为PSV1~4组。NAVA组的支持水平每10 min增加1倍,分别为起始NAVA支持水平的1、2、3、4倍,分别记为HAVA1~4组。观察不同支持条件下(PSV1~4组及NAVA1~4组)潮气量(VT)、气道峰压(Ppeak)、呼吸机通气频率(VRR)、中枢呼吸频率(NRR)、膈肌电活动峰值(EAdipeak)、动脉血二氧化碳分压(PaCO2)、无效触发发生情况、呼吸机送气时间(Ti-flow)、呼吸机呼气时间(Te-flow)、神经吸气时间(Ti-neu)、神经呼气时间(Te-neu)、总体VT变异度等指标。

结果

(1)随着通气支持水平的增加,PSV1~4组VT、无效触发显著增加,VRR、NRR均明显减慢,组内比较差异均有统计学意义(F=13.471,F=30.521,F=13.672,F=9.357,P<0.05);PSV3~4组的VT较同时点NAVA3~4组均显著增加,PSV4组无效触发显著高于NAVA4组,差异均有统计学意义(P<0.05);NAVA1~4组组内各时点的VT比较,差异无统计学意义(P>0.05)。(2)随着通气支持水平的增加,PSV1~4组组内各时点的Ti-neu,以及NAVA1~4组组内各时点的Ti-flow、Te-flow、Ti-neu、Te-neu均无显著增加,差异无统计学意义(P>0.05);PSV1~4组Ti-flow、Te-flow、Te-neu显著增加,组内比较差异均有统计学意义(F=9.564,F=13.431,F=21.126,P<0.05);PSV4组Ti-flow、Te-flow、Te-neu分别显著高于NAVA4组,差异均有统计学意义(P均<0.05)。(3)NAVA组总体VT变异度显著高于PSV组,差异有统计学意义(P<0.05);NAVA组Ppeak和EAdi显著相关(r=0.96±0.14,P<0.05)。(4)PSV4组的PaCO2较PSV1组显著降低,差异有统计学意义(P<0.05)。

结论

与PSV相比,NAVA通气支持时间、通气支持水平与自身呼吸形式更加匹配,对呼吸形式影响更小,一定程度上避免通气不足和过度通气。

Objective

To determine the effect of neurally adjusted ventilatory assist (NAVA) and pressure support ventilation (PSV) on respiratory pattern in patients with acute respiratory failure (ARF).

Methods

12 ARF patients received mechanical ventilation admitted in Department of Critical Care Medicine of Northern Jiangsu People's Hospital from January 2018 to June 2019 were enrolled in the study. Patients were. randomly received NAVA and PSV. The ventilation support level of NAVA and PSV started from 5 cmH2O and increased in four steps every 10 min. The pressure support levels in PSV group were 5, 10, 15 and 20 cmH2O, respectively. The NAVA level were 1, 2, 3 and 4 times of the initial NAVA level in NAVA group. Parameters of the respiratory pattern and gas exchange were recorded at the same time at each time point of PSV and NAVA group.

Results

(1) As ventilation support levels increase, the tidal volume (Vt), invalid trigger increased significantly, VRR, NRR decreased significantly in PSV1-4 (F=13.471, F=30.521, F=13.672, F=9.357, P<0.05); VT in PSV3-4 increased significantly compared with NAVA3-4 in concurrent point , invalid trigger in PSV4 increased significantly compared with NAVA4 (P<0.05); the comparison of VT in each points in NAVA1-4 were not statistically significant (P>0.05). (2) Ti-neu at each point in PSV1-4, and Ti-flow, Te-flow, Ti-neu, Te-neu in the NAVA1-4 had no statistical significance (P>0.05); the in-group comparison with Ti-flow, Te-flow, Te-neu in PSV1-4 had significant differences (F=9.564, F=13.431, F=21.126, P<0.05); Ti-flow, Te-flow, Te-neu in PSV4 was significantly higher than that in NAVA4, respectively (P<0.05). (3) The Vt variability in NAVA group (21.7%±9.3%) was significantly higher than that in PSV group (10.7%±4.8%) (F=13.136,P<0.05). The peak airway pressure (Ppeak) in NAVA group was always closely related to the diaphragm electrical activity (EAdi) (r=0.96±0.14,P<0.05). (4) The arterial blood carbon dioxide (PaCO2) in PSV4 was significantly lower than that in PSV1 (P<0.05).

Conclusion

Compared with PSV, the ventilation time and the support level in NAVA were more compatible with patient's own breathing pattern, and NAVA had less effects on the physiological breathing pattern and might avoid insufficient or hyperinflation to some extent.

表1 不同NAVA和PSV支持水平对患者呼吸形式的影响(
xˉ
±s,12例)
图1 不同NAVA和PSV通气支持水平对吸气时间和呼气时间的影响
图2 不同NAVA和PSV通气支持水平与EAdi的相关性分析
1
Thille AW, Rodriguez P, Cabello B, et al. Patient-ventilator asynchrony during assisted mechanical ventilation [J]. Intensive Care Med, 2006, 32(10): 1515-1522.
2
de la Oliva P, Schüffelmann C, Gómez-Zamora A, et al. Asynchrony, neural drive, ventilatory variability and COMFORT: NAVA versus pressure support in pediatric patients. A non-randomized cross-over trial [J]. Intensive Care Med, 2012, 38(5): 838-846.
3
Vagheggini G, Mazzoleni S, Panait EV, et al. Physiologic response to various levels of pressure support and NAVA in prolonged weaning [J]. Respir Med, 2013, 107(11): 1748-1754.
4
Sinderby C, Navalesi P, Beck J, et al. Neural control of mechanical ventilation in respiratory failure [J]. Nat Med, 1999, 5(12): 1433-1436.
5
Leung P, Jubran A, Tobin MJ, et al. Comparison of assisted ventilator modes on triggering, patient effort, and dyspnea [J]. Am J Respir Crit Care Med, 1997,155(6): 1940-1948.
6
Finucane KE, Panizza JA, Singh B. Efficiency of the normal human diaphragm with hyperinflation [J]. J Appl Physiol, 2005, 99(4): 1402-1411.
7
Beck J, Gottfried BS, Navalesi P, et al. Electrical activity of the diaphragm during pressure support ventilation in acute respiratory failure [J]. Am J Respir Crit Care Med, 2001, 164(3): 419-424.
8
Sinderby C, Beck J, Spahija J. et al. Inspiratory muscle unloading by neurally adjusted ventilatory assist during maximal inspiratory efforts in healthy subjects [J]. Chest, 2007, 131(3): 711-717.
9
Brander L, Leong-Poi H, Beck J, et al. Titration and Implementation of neurally adjusted ventilatory assist in critically ill patients [J]. Chest, 2009, 135(3): 695-703.
10
Goligher EC, Brochard LJ, Reid WD, et al. Diaphragmatic myotrauma: a mediator of prolonged ventilation and poor patient outcomes in acute respiratory failure [J]. Lancet Respir Med, 2019, 7(1): 90-98.
11
Guz A. Hering and Breuer revisited in humans: An invasive study before the days of ethics committees [J]. Am J Respir Crit Care Med, 2001, 164(7): 1110 -1111.
12
Colombo D, Cammarota G, Bergamaschi V, et al. Physiologic response to varying levels of pressure support and neurally adjusted ventilatory assist in patients with acute respiratory failure [J]. Intensive Care Med, 2008, 34(11): 2010-2018.
13
Younes M, Kun J, Webster K, et al. Response of ventilator-dependent patients to delayed opening of exhalation valve [J]. Am J Respir Crit Care Med, 2002, 166(1): 21-30.
14
Thille AW, Cabello B, Galia F, et al. Reduction of patient-ventilator asynchrony by reducing tidal volume during pressure-support ventilation [J]. Intensive Care Med, 2008, 34(8): 1477-1486.
15
Vaporidi K, Babalis D, Chytas A, et al. Clusters of ineffective efforts during mechanical ventilation: impact on outcome [J]. Intensive Care Med, 2017, 43(2): 184-191.
16
Blanch L, Villagra A, Sales B, et al. Asynchronies during mechanical ventilation are associated with mortality [J]. Intensive Care Med, 2015, 41(4): 633-641.
17
Schmidt M, Demoule A, Cracco C, et al. Neurally adjusted ventilatory assist increases respiratory variability and complexity in acute respiratory failure [J]. Anesthesiology, 2010,112(3): 670-681.
[1] 豆艺璇, 黄怀, 钱绮雯, 邢然然, 林丽, 白建芳. 低强度吸气肌训练对机械通气患者肺康复的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 370-375.
[2] 徐娟, 孙汝贤, 赵东亚, 张清艳, 金兆辰, 蔡燕. 右美托咪定序贯镇静模式对中深度镇静的机械通气患者预后和谵妄的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 363-369.
[3] 许振琦, 易伟, 范闻轩, 王金锋. 经鼻高流量氧疗与无创机械通气在严重创伤术后轻中度低氧血症患者中的临床应用[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 306-309.
[4] 佳麒, 罗楷, 杨磊, 李羽. 气管插管患儿围术期套囊压力管理研究现状杨[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(02): 132-138.
[5] 钱晓英, 吴新, 徐婷婷. 颅脑损伤并发呼吸衰竭患者早期机械通气的效果分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 526-528.
[6] 代芬, 卞士柱. 无创机械通气联合肺康复在肺动脉高压呼吸衰竭治疗中的临床应用[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 560-562.
[7] 程传丽, 曾慧, 周静, 孙凌霞, 吴敏, 钱明江, 陈武, 万洁, 周仁佳. 超声引导下胸肺物理治疗对机械通气患者膈肌功能的疗效分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 563-565.
[8] 徐欣轶, 薛蓓, 蒋莉, 陈慧. NRI联合CFS评分对肺癌术后机械通气的预测分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 358-360.
[9] 林金锋, 张素燕, 田李均, 曹志龙, 徐俊贤, 韩旭东. 短暂呼气末阻塞法用于指导机械通气患者撤机的临床分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 266-268.
[10] 周旻忞, 张恒喜, 冯华, 施林燕. 超声膈肌功能评估对重症肺炎伴呼吸衰竭患者机械通气撤机的指导意义[J]. 中华肺部疾病杂志(电子版), 2023, 16(01): 98-100.
[11] 张浩月, 张宇佳, 蒲萍. 经鼻导管高流量氧疗在ICU机械通气患者撤机后效果的Meta分析[J]. 中华肺部疾病杂志(电子版), 2022, 15(06): 801-805.
[12] 朱秀芬, 韦碧琳, 郑慧芳, 丁林芳, 徐子萌, 余文轩, 原皓, 常泽楠, 黄志坤, 刘紫锰. T管与PSV自主呼吸试验对重症患者成功撤机后临床转归的影响——一项回顾性队列研究[J]. 中华重症医学电子杂志, 2023, 09(01): 54-61.
[13] 张俊谊, 徐晓婷, 刘玲. 肌肉组织特异性miRNA与机械通气患者膈肌功能及撤机结局的关系[J]. 中华重症医学电子杂志, 2023, 09(01): 46-53.
[14] 李宏亮, 周建新. 反转触发:易被忽视的人机不同步[J]. 中华重症医学电子杂志, 2023, 09(01): 19-24.
[15] 杨怡, 胡馗, 胡汝均, 江智霞. 高氧血症与机械通气治疗导致呼吸机相关性肺炎的相关性研究进展[J]. 中华临床医师杂志(电子版), 2022, 16(06): 597-600.
阅读次数
全文


摘要