切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2021, Vol. 07 ›› Issue (02) : 164 -168. doi: 10.3877/cma.j.issn.2096-1537.2021.02.013

综述

细胞周期阻滞与脓毒症诱导的急性肾损伤研究进展
刘景卓1, 张欣桐1, 李盼1, 马德胜1, 马莉1,()   
  1. 1. 730030 兰州大学第二医学院重症医学科三病区
  • 收稿日期:2020-09-17 出版日期:2021-05-28
  • 通信作者: 马莉
  • 基金资助:
    兰州市人才创新创业项目(2018-RC-85)

Research progress in the mechanism of cell cycle arrest in sepsis-induced acute kidney injury

Jingzhuo Liu1, Xintong Zhang1, Pan Li1, Desheng Ma1, Li Ma1()   

  1. 1. Third Department of Emergency Intensive Care Unit, Lanzhou University Second Hospital, Lanzhou 730030, China
  • Received:2020-09-17 Published:2021-05-28
  • Corresponding author: Li Ma
引用本文:

刘景卓, 张欣桐, 李盼, 马德胜, 马莉. 细胞周期阻滞与脓毒症诱导的急性肾损伤研究进展[J]. 中华重症医学电子杂志, 2021, 07(02): 164-168.

Jingzhuo Liu, Xintong Zhang, Pan Li, Desheng Ma, Li Ma. Research progress in the mechanism of cell cycle arrest in sepsis-induced acute kidney injury[J]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2021, 07(02): 164-168.

脓毒症是ICU中病死率较高的一类疾病,其可以导致多器官功能障碍综合征(MODS),其中,脓毒症诱导的急性肾损伤(SAKI)发病率较高且与不良预后有关。目前对SAKI的发病机制缺乏全面的认识,这已成为其早期诊断和治疗的重要障碍。越来越多的研究证实,细胞周期阻滞作为一种肾脏的早期保护机制,是SAKI病理生理进程中的一项重要环节,可避免受损DNA的复制。本文总结细胞阻滞在SAKI中的作用机制,以及细胞周期阻滞的生物标志物,以期说明细胞周期阻滞可作为潜在治疗靶点,在早期预防或改善AKI预后中发挥作用。

Sepsis is a common syndrome with high mortality in ICU, which lead to MODS. Septic acute kidney injury (SAKI) has a high incidence and is associated with poor prognosis. The lack of comprehensive understanding of the pathogenesis of AKI is an important obstacle to its early diagnosis and treatment. However, more and more studies have confirmed that cell cycle arrest, as an early protective mechanism of the kidney, is a kind of important molecules mechanism and an important factor in the pathophysiological process in SAKI which can be treated as a target to avoid the replication of damaged DNA. We summarized the mechanism of cell cycle arrest in SAKI, as well as the markers of cell cycle block in this manuscript. We hope cell cycle block can be used as a potential therapeutic target for early prevention and improvement of prognosis of AKI.

1
Seymour CW, Liu VX, Iwashyna TJ, et al. Assessment of clinical criteria for sepsis: for the third international consensus definitions for sepsis and septic shock (Sepsis-3) [J]. JAMA, 2016, 315(8): 762-774.
2
Fleischmann C, Scherag A, Adhikari NK, et al. Assessment of global incidence and mortality of hospital-treated sepsis. current estimates and limitations [J]. Am J Respir Crit Care Med, 2016, 193(3): 259-272.
3
Pinheiro KHE, Azêdo FA, Areco KCN, et al. Risk factors and mortality in patients with sepsis, septic and non septic acute kidney injury in ICU [J]. Orgão oficial de Sociedades Brasileira e Latino-Americana de Nefrologia. 2019.
4
Pabla N, Gibson AA, Buege M, et al. Mitigat ion of acute kidney injury by cell-cycle inhibitors that suppress both CDK4/6 and OCT2 functions [J]. Proc Natl Acad Sci, 2015, 112(16): 5231-5236.
5
Morgan DO. Cyclin-dependent kinases: engines, clocks, and microprocessors [J]. Annu Rev Cell Dev Biol, 1997, 13: 261-291.
6
Criqui MC, Weingartner M, Capron A, et al. Sub-cellular localisation of GFP-tagged tobacco mitotic cyclins during the cell cycle and after spindle checkpoint activation [J]. Plant J, 2001, 28(5): 569-581.
7
Awasthi P, Foiani M, Kumar A. ATM and ATR signaling at a glance [J]. J Cell Sci, 2016, 129(6): 1285.
8
Dulić V, Kaufmann WK, Wilson SJ, et al. p53-dependent inhibition of cyclin-dependent kinase activities in human fibroblasts during radiation-induced G1 arrest [J]. Cell, 1994, 76(6): 1013-1023.
9
Russo AA, Tong L, Lee JO, et al. Structural basis for inhibition of the cyclin-dependent kinase Cdk6 by the tumour suppressor p16INK4a [J]. Nature, 1998, 395(6699): 237-243.
10
Yang QH, Liu DW, Long Y, et al. Acute renal failure during sepsis: Potential role of cell cycle regulation [J]. J Infect, 2009, 58(6): 459-464.
11
Iwakura T, Fujigaki Y, Fujikura T, et al. Acquired resistance to rechallenge injury after acute kidney injury in rats is associated with cell cycle arrest in proximal tubule cells [J]. Am J Physiol Renal Physiol, 2016, 310(9): F872-884.
12
Dirocco DP, Bisi J, Roberts P, et al. CDK4/6 inhibition induces epithelial cell cycle arrest and ameliorates acute kidney injury [J]. Am J Physiol Renal Physiol, 2014, 306(4): F379.
13
Pabla N, Gibson AA, Buege M, et al. Mitigation of acute kidney injury by cell-cycle inhibitors that suppress both CDK4/6 and OCT2 functions [J]. Proc Natl Acad Sci, 2015, 112(16): 5231-5236.
14
Cuartero M, Ballús J, Sabater J, et al. Cell-cycle arrest biomarkers in urine to predict acute kidney injury in septic and non-septic critically ill patients [J]. Ann Intensive Care, 2017, 7(1): 92.
15
Yang QH, Liu DW, Long Y, et al. Acute renal failure during sepsis: potential role of cell cycle regulation [J]. J Infect, 2009, 58(6): 459-464.
16
Aydoğdu M, Boyacı N, Yüksel S, et al. A promising marker in early diagnosis of septic acute kidney injury of critically ill patients: urine insulin like growth factor binding protein-7 [J]. Scand J Clin Lab Invest, 2016, 76(5): 402-10.
17
Gu X, Peng CY, Lin SY, et al. P16INK4a played a critical role in exacerbating acute tubular necrosis in acute kidney injury [J]. Am J Transl Res, 2019, 11(6): 3850-3861.
18
Higgins SP, Tang Y, Higgins CE, et al. TGF-β1/p53 signaling in renal fibrogenesis [J]. Cell Signal, 2018, 43: 1-10.
19
Ying Y, Kim J, Westphal SN, et al. Targeted deletion of p53 in the proximal tubule prevents ischemic renal injury [J]. J Am Soc Nephrol, 2014, 25(12): 2707-16.
20
Peng ZY, Zhou F, Kellum JA. Cross-species validation of cell cycle arrest markers for acute kidney injury in the rat during sepsis [J]. Intensive Care Med Exp, 2016, 4(1): 12.
21
McCullough PA, Ostermann M, Forni LG, et al. Serial urinary tissue inhibitor of metalloproteinase-2 and insulin-like growth factor-binding protein 7 and the prognosis for acute kidney injury over the course of critical illness [J]. Cardiorenal Med, 2019, 9(6): 358-369.
22
张卉, 杨晓. 尿[TIMP-2]×[IGFBP-7]对心脏术后患者急性肾损伤早期预测价值的Meta分析 [J]. 临床肾脏病杂志, 2019, 19(5) : 340-346.
23
Wang X, Ma T, Wan X, et al. IGFBP7 regulates sepsis-induced acute kidney injury through ERK1/2 signaling [J]. Acta Biochim Biophys Sin, 2019, 51(8): 799-806.
24
Wang Z, Famulski K, Lee J, et al. TIMP2 and TIMP3 have divergent roles in early renal tubulointerstitial injury [J]. Kidney Int, 2014, 85(1): 82-93.
25
Vijayan A, Faubel S, Askenazi DJ, et al. Clinical use of the urine biomarker [TIMP-2]×[IGFBP7] for acute kidney injury risk assessment [J]. Am J Kidney Dis, 2016, 68(1): 19-28.
26
El Minshawy O, Khedr M, Youssuf A, et al. Value of the cell cycle arrest biomarkers in the diagnosis of pregnancy related acute kidney injury [J]. Biosci Rep, 2020, BSR20200962.
27
Hatton GE, Wang YW, Isbell KD, et al. Urinary cell cycle arrest proteins urinary tissue inhibitor of metalloprotease 2 and insulin-like growth factor binding protein 7 predict acute kidney injury after severe trauma: A prospective observational study [J]. J Trauma Acute Care Surg, 2020, 89(4): 761-767.
28
Wang K, Xie S, Xiao K, et al. Biomarkers of sepsis-induced acute kidney injury [J]. Biomed Res Int, 2018: 6937947.
29
Jia HM, Huang LF, Zheng Y, et al . Prognostic value of cell cycle arrest biomarkers in patients at high risk for acute kidney injury: A systematic review and meta-analysis [J]. Nephrology (Carlton), 2017, 22(11): 831-837.
30
Nusshag C, Rupp C, Schmitt F, et al. Cell cycle biomarkers and soluble urokinase-type plasminogen activator receptor for the prediction of sepsis-induced acute kidney injury requiring renal replacement therapy: a prospective, exploratory study [J]. Crit Care Med, 2019, 47(12): e999-e1007.
31
Lin Z, Liu Z, Wang X, et al. MiR-21-3p plays a crucial role in metabolism alteration of renal tubular epithelial cells during sepsis associated acute kidney injury via AKT/CDK2-FOXO1 pathway [J]. Biomed Res Int, 2019:2821731.
32
Li F, Liu Z, Tang C, et al. FGF21 is induced in cisplatin nephrotoxicity to protect against kidney tubular cell injury [J]. FASEB J, 2018, 32(6): 3423-3433.
[1] 韩圣瑾, 周正武, 翁云龙, 黄鑫. 碳酸氢钠林格液联合连续性肾脏替代疗法对创伤合并急性肾损伤患者炎症水平及肾功能的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 376-381.
[2] 张秋彬, 张楠, 林清婷, 徐军, 朱华栋, 姜辉. 急性胰腺炎合并急性肾损伤患者的预后评估[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 382-389.
[3] 孟建标, 张庚, 焦燕娜. 脓毒症合并心功能障碍患者早期肠道微生态改变的探讨[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 279-285.
[4] 陈宇, 冯芳, 张露, 刘健. 基于生物信息学分析筛选脓毒症心肌病关键致病基因[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 286-291.
[5] 张晓燕, 肖东琼, 高沪, 陈琳, 唐发娟, 李熙鸿. 转录因子12过表达对脓毒症相关性脑病大鼠大脑皮质的保护作用及其机制[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 540-549.
[6] 姚咏明. 如何精准评估烧伤脓毒症患者免疫状态[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 552-552.
[7] 李伟, 卓剑, 黄川, 黄有攀. Lac、HO-1、sRAGE、CRP/ALB表达及脓毒症并发ARDS危险因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 514-516.
[8] 李青霖, 宋仁杰, 周飞虎. 一种重型劳力性热射病相关急性肾损伤小鼠模型的建立与探讨[J]. 中华肾病研究电子杂志, 2023, 12(05): 265-270.
[9] 任加发, 邬步云, 邢昌赢, 毛慧娟. 2022年急性肾损伤领域基础与临床研究进展[J]. 中华肾病研究电子杂志, 2023, 12(05): 276-281.
[10] 李金璞, 饶向荣. 抗病毒药物和急性肾损伤[J]. 中华肾病研究电子杂志, 2023, 12(05): 287-290.
[11] 宋艳琪, 任雪景, 王文娟, 韩秋霞, 续玥, 庄凯婷, 肖拓, 蔡广研. 间充质干细胞对顺铂诱导的小鼠急性肾损伤中细胞铁死亡的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 187-193.
[12] 程庆砾. 新冠病毒感染与肾脏[J]. 中华肾病研究电子杂志, 2023, 12(04): 240-240.
[13] 易成, 韦伟, 赵宇亮. 急性肾脏病的概念沿革[J]. 中华临床医师杂志(电子版), 2023, 17(08): 906-910.
[14] 谭睿, 王晶, 於江泉, 郑瑞强. 脓毒症中高密度脂蛋白、载脂蛋白A-I和血清淀粉样蛋白A的作用研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(06): 749-753.
[15] 蔡荇, 郑瑞强. 肝素结合蛋白在脓毒症中的应用及研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(04): 487-490.
阅读次数
全文


摘要