切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2021, Vol. 07 ›› Issue (02) : 164 -168. doi: 10.3877/cma.j.issn.2096-1537.2021.02.013

综述

细胞周期阻滞与脓毒症诱导的急性肾损伤研究进展
刘景卓1, 张欣桐1, 李盼1, 马德胜1, 马莉1,()   
  1. 1. 730030 兰州大学第二医学院重症医学科三病区
  • 收稿日期:2020-09-17 出版日期:2021-05-28
  • 通信作者: 马莉
  • 基金资助:
    兰州市人才创新创业项目(2018-RC-85)

Research progress in the mechanism of cell cycle arrest in sepsis-induced acute kidney injury

Jingzhuo Liu1, Xintong Zhang1, Pan Li1, Desheng Ma1, Li Ma1()   

  1. 1. Third Department of Emergency Intensive Care Unit, Lanzhou University Second Hospital, Lanzhou 730030, China
  • Received:2020-09-17 Published:2021-05-28
  • Corresponding author: Li Ma
引用本文:

刘景卓, 张欣桐, 李盼, 马德胜, 马莉. 细胞周期阻滞与脓毒症诱导的急性肾损伤研究进展[J/OL]. 中华重症医学电子杂志, 2021, 07(02): 164-168.

Jingzhuo Liu, Xintong Zhang, Pan Li, Desheng Ma, Li Ma. Research progress in the mechanism of cell cycle arrest in sepsis-induced acute kidney injury[J/OL]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2021, 07(02): 164-168.

脓毒症是ICU中病死率较高的一类疾病,其可以导致多器官功能障碍综合征(MODS),其中,脓毒症诱导的急性肾损伤(SAKI)发病率较高且与不良预后有关。目前对SAKI的发病机制缺乏全面的认识,这已成为其早期诊断和治疗的重要障碍。越来越多的研究证实,细胞周期阻滞作为一种肾脏的早期保护机制,是SAKI病理生理进程中的一项重要环节,可避免受损DNA的复制。本文总结细胞阻滞在SAKI中的作用机制,以及细胞周期阻滞的生物标志物,以期说明细胞周期阻滞可作为潜在治疗靶点,在早期预防或改善AKI预后中发挥作用。

Sepsis is a common syndrome with high mortality in ICU, which lead to MODS. Septic acute kidney injury (SAKI) has a high incidence and is associated with poor prognosis. The lack of comprehensive understanding of the pathogenesis of AKI is an important obstacle to its early diagnosis and treatment. However, more and more studies have confirmed that cell cycle arrest, as an early protective mechanism of the kidney, is a kind of important molecules mechanism and an important factor in the pathophysiological process in SAKI which can be treated as a target to avoid the replication of damaged DNA. We summarized the mechanism of cell cycle arrest in SAKI, as well as the markers of cell cycle block in this manuscript. We hope cell cycle block can be used as a potential therapeutic target for early prevention and improvement of prognosis of AKI.

1
Seymour CW, Liu VX, Iwashyna TJ, et al. Assessment of clinical criteria for sepsis: for the third international consensus definitions for sepsis and septic shock (Sepsis-3) [J]. JAMA, 2016, 315(8): 762-774.
2
Fleischmann C, Scherag A, Adhikari NK, et al. Assessment of global incidence and mortality of hospital-treated sepsis. current estimates and limitations [J]. Am J Respir Crit Care Med, 2016, 193(3): 259-272.
3
Pinheiro KHE, Azêdo FA, Areco KCN, et al. Risk factors and mortality in patients with sepsis, septic and non septic acute kidney injury in ICU [J]. Orgão oficial de Sociedades Brasileira e Latino-Americana de Nefrologia. 2019.
4
Pabla N, Gibson AA, Buege M, et al. Mitigat ion of acute kidney injury by cell-cycle inhibitors that suppress both CDK4/6 and OCT2 functions [J]. Proc Natl Acad Sci, 2015, 112(16): 5231-5236.
5
Morgan DO. Cyclin-dependent kinases: engines, clocks, and microprocessors [J]. Annu Rev Cell Dev Biol, 1997, 13: 261-291.
6
Criqui MC, Weingartner M, Capron A, et al. Sub-cellular localisation of GFP-tagged tobacco mitotic cyclins during the cell cycle and after spindle checkpoint activation [J]. Plant J, 2001, 28(5): 569-581.
7
Awasthi P, Foiani M, Kumar A. ATM and ATR signaling at a glance [J]. J Cell Sci, 2016, 129(6): 1285.
8
Dulić V, Kaufmann WK, Wilson SJ, et al. p53-dependent inhibition of cyclin-dependent kinase activities in human fibroblasts during radiation-induced G1 arrest [J]. Cell, 1994, 76(6): 1013-1023.
9
Russo AA, Tong L, Lee JO, et al. Structural basis for inhibition of the cyclin-dependent kinase Cdk6 by the tumour suppressor p16INK4a [J]. Nature, 1998, 395(6699): 237-243.
10
Yang QH, Liu DW, Long Y, et al. Acute renal failure during sepsis: Potential role of cell cycle regulation [J]. J Infect, 2009, 58(6): 459-464.
11
Iwakura T, Fujigaki Y, Fujikura T, et al. Acquired resistance to rechallenge injury after acute kidney injury in rats is associated with cell cycle arrest in proximal tubule cells [J]. Am J Physiol Renal Physiol, 2016, 310(9): F872-884.
12
Dirocco DP, Bisi J, Roberts P, et al. CDK4/6 inhibition induces epithelial cell cycle arrest and ameliorates acute kidney injury [J]. Am J Physiol Renal Physiol, 2014, 306(4): F379.
13
Pabla N, Gibson AA, Buege M, et al. Mitigation of acute kidney injury by cell-cycle inhibitors that suppress both CDK4/6 and OCT2 functions [J]. Proc Natl Acad Sci, 2015, 112(16): 5231-5236.
14
Cuartero M, Ballús J, Sabater J, et al. Cell-cycle arrest biomarkers in urine to predict acute kidney injury in septic and non-septic critically ill patients [J]. Ann Intensive Care, 2017, 7(1): 92.
15
Yang QH, Liu DW, Long Y, et al. Acute renal failure during sepsis: potential role of cell cycle regulation [J]. J Infect, 2009, 58(6): 459-464.
16
Aydoğdu M, Boyacı N, Yüksel S, et al. A promising marker in early diagnosis of septic acute kidney injury of critically ill patients: urine insulin like growth factor binding protein-7 [J]. Scand J Clin Lab Invest, 2016, 76(5): 402-10.
17
Gu X, Peng CY, Lin SY, et al. P16INK4a played a critical role in exacerbating acute tubular necrosis in acute kidney injury [J]. Am J Transl Res, 2019, 11(6): 3850-3861.
18
Higgins SP, Tang Y, Higgins CE, et al. TGF-β1/p53 signaling in renal fibrogenesis [J]. Cell Signal, 2018, 43: 1-10.
19
Ying Y, Kim J, Westphal SN, et al. Targeted deletion of p53 in the proximal tubule prevents ischemic renal injury [J]. J Am Soc Nephrol, 2014, 25(12): 2707-16.
20
Peng ZY, Zhou F, Kellum JA. Cross-species validation of cell cycle arrest markers for acute kidney injury in the rat during sepsis [J]. Intensive Care Med Exp, 2016, 4(1): 12.
21
McCullough PA, Ostermann M, Forni LG, et al. Serial urinary tissue inhibitor of metalloproteinase-2 and insulin-like growth factor-binding protein 7 and the prognosis for acute kidney injury over the course of critical illness [J]. Cardiorenal Med, 2019, 9(6): 358-369.
22
张卉, 杨晓. 尿[TIMP-2]×[IGFBP-7]对心脏术后患者急性肾损伤早期预测价值的Meta分析 [J]. 临床肾脏病杂志, 2019, 19(5) : 340-346.
23
Wang X, Ma T, Wan X, et al. IGFBP7 regulates sepsis-induced acute kidney injury through ERK1/2 signaling [J]. Acta Biochim Biophys Sin, 2019, 51(8): 799-806.
24
Wang Z, Famulski K, Lee J, et al. TIMP2 and TIMP3 have divergent roles in early renal tubulointerstitial injury [J]. Kidney Int, 2014, 85(1): 82-93.
25
Vijayan A, Faubel S, Askenazi DJ, et al. Clinical use of the urine biomarker [TIMP-2]×[IGFBP7] for acute kidney injury risk assessment [J]. Am J Kidney Dis, 2016, 68(1): 19-28.
26
El Minshawy O, Khedr M, Youssuf A, et al. Value of the cell cycle arrest biomarkers in the diagnosis of pregnancy related acute kidney injury [J]. Biosci Rep, 2020, BSR20200962.
27
Hatton GE, Wang YW, Isbell KD, et al. Urinary cell cycle arrest proteins urinary tissue inhibitor of metalloprotease 2 and insulin-like growth factor binding protein 7 predict acute kidney injury after severe trauma: A prospective observational study [J]. J Trauma Acute Care Surg, 2020, 89(4): 761-767.
28
Wang K, Xie S, Xiao K, et al. Biomarkers of sepsis-induced acute kidney injury [J]. Biomed Res Int, 2018: 6937947.
29
Jia HM, Huang LF, Zheng Y, et al . Prognostic value of cell cycle arrest biomarkers in patients at high risk for acute kidney injury: A systematic review and meta-analysis [J]. Nephrology (Carlton), 2017, 22(11): 831-837.
30
Nusshag C, Rupp C, Schmitt F, et al. Cell cycle biomarkers and soluble urokinase-type plasminogen activator receptor for the prediction of sepsis-induced acute kidney injury requiring renal replacement therapy: a prospective, exploratory study [J]. Crit Care Med, 2019, 47(12): e999-e1007.
31
Lin Z, Liu Z, Wang X, et al. MiR-21-3p plays a crucial role in metabolism alteration of renal tubular epithelial cells during sepsis associated acute kidney injury via AKT/CDK2-FOXO1 pathway [J]. Biomed Res Int, 2019:2821731.
32
Li F, Liu Z, Tang C, et al. FGF21 is induced in cisplatin nephrotoxicity to protect against kidney tubular cell injury [J]. FASEB J, 2018, 32(6): 3423-3433.
[1] 庄燕, 戴林峰, 张海东, 陈秋华, 聂清芳. 脓毒症患者早期生存影响因素及Cox 风险预测模型构建[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(05): 372-378.
[2] 杨瑾, 刘雪克, 张媛媛, 金钧, 韦瑶. 肠道微生物来源石胆酸对脓毒症相关肝损伤的保护作用[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 265-274.
[3] 张霞, 张瑞, 郑志波, 张勤. 紫草素调控乳酸化修饰和线粒体功能改善脓毒症心肌病小鼠的预后[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 275-284.
[4] 张婧琦, 江洋, 孙佳璐, 唐兴喆, 赵宇飞, 崔颖, 李信响, 戴景月, 傅琳, 彭新桂. 基于肾周CT特征结合血清肌酐水平探讨脓毒症伴急性肾损伤的早期识别[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 285-292.
[5] 李振翮, 魏长青, 甄国栋, 李振富. 脓毒症并发急性呼吸窘迫综合征患者血清S1P、Wnt5a变化及其临床意义[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 293-300.
[6] 张锦丽, 席毛毛, 褚志刚, 栾夏刚, 陈诺, 王德运, 谢卫国. 大面积烧伤患者发生早期急性肾损伤的危险因素分析[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(04): 282-287.
[7] 杜霞, 马梦青, 曹长春. 造影剂诱导的急性肾损伤的发病机制及干预靶点研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 279-282.
[8] 郭俊楠, 林惠, 任艺林, 乔晞. 氨基酸代谢异常在急性肾损伤向慢性肾脏病转变中的作用研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 283-287.
[9] 陈曦, 吴宗盛, 郑明珠, 邱海波. 胸腺萎缩在脓毒症免疫紊乱中的研究进展[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 379-383.
[10] 杨翔, 郭兰骐, 谢剑锋, 邱海波. 转录组学在脓毒症诊疗中的临床研究进展[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 384-388.
[11] 司楠, 孙洪涛. 创伤性脑损伤后肾功能障碍危险因素的研究进展[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(05): 300-305.
[12] 沈炎, 张俊峰, 唐春芳. 预后营养指数结合血清降钙素原、胱抑素C及视黄醇结合蛋白对急性胰腺炎并发急性肾损伤的预测价值[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 536-540.
[13] 陈惠英, 邱敏珊, 邵汉权. 脓毒症诱发肠黏膜屏障功能损伤的风险因素模型构建与应用效果[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 448-452.
[14] 颜世锐, 熊辉. 感染性心内膜炎合并急性肾损伤患者的危险因素探索及死亡风险预测[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 618-624.
[15] 傅新露, 李之岳, 卢丹. 妊娠合并结肠癌穿孔致脓毒症休克一例并文献复习[J/OL]. 中华产科急救电子杂志, 2024, 13(04): 227-231.
阅读次数
全文


摘要