切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2021, Vol. 07 ›› Issue (02) : 174 -179. doi: 10.3877/cma.j.issn.2096-1537.2021.02.015

综述

细胞外囊泡在急性呼吸窘迫综合征中潜在作用的研究进展
王皓飞1, 黄英姿1,()   
  1. 1. 210009 南京,江苏省重症医学重点实验室 东南大学附属中大医院重症医学科
  • 收稿日期:2020-11-06 出版日期:2021-05-28
  • 通信作者: 黄英姿
  • 基金资助:
    国家自然科学基金资助项目(81971812); 江苏省自然科学基金项目(BK20191264)

Potential role of extracellular vesicles in acute respiratory distress syndrome

Haofei Wang1, Yingzi Huang1()   

  1. 1. Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, the Affiliated Hospital of Southeast University, Nanjing 210009, China
  • Received:2020-11-06 Published:2021-05-28
  • Corresponding author: Yingzi Huang
引用本文:

王皓飞, 黄英姿. 细胞外囊泡在急性呼吸窘迫综合征中潜在作用的研究进展[J/OL]. 中华重症医学电子杂志, 2021, 07(02): 174-179.

Haofei Wang, Yingzi Huang. Potential role of extracellular vesicles in acute respiratory distress syndrome[J/OL]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2021, 07(02): 174-179.

急性呼吸窘迫综合征(ARDS)是由肺和肺外多种损伤引起的危及生命的疾病,其病死率居高不下,发病机制仍需进一步阐明。近些年的研究表明,失衡的免疫应答在ARDS的发生发展中起重要作用。细胞外囊泡(EVs)是一种细胞分泌的小的无核细胞结构,可以在多种细胞类型间靶向转移多种生物物质,在细胞通讯及物质传递方面起重要作用。近年来对EVs的研究为阐明ARDS的发病机制及其治疗提供了新的思路。本文就EVs在ARDS中的潜在的生物标志物作用和治疗作用的研究进展作一综述,提出不同细胞来源的EVs可能作为ARDS早期识别的生物标志物以及临床治疗的新方向。

Acute respiratory distress syndrome (ARDS) is a life-threatening syndrome caused by pulmonary and extrapulmonary injury. The mortality remains high and the pathogenesis still needs to be further clarified. Recent studies have shown that imbalanced immune responses play an important role in the occurrence and development of ARDS. Extracellular vesicles (EVs) are small non-nucleated cell structures secreted by cells, which can target and transfer a variety of biological substances among various cell types, and play an important role in cell communication and material transfer. In recent years, research on EVs has provided new ideas for the pathogenesis and treatment of ARDS. We review the progress of potential biomarkers and therapeutic effects of EVs in ARDS, and proposes that EVs from different cell sources may be used as biomarkers for early recognition and new management target in ARDS in this manuscript.

1
Matthay M, Zemans R, Zimmerman G, et al. Acute respiratory distress syndrome [J]. Nat Rev Dis Primers, 2019, 5(1): 18.
2
Chiumello D, Brochard L, Marini J, et al. Respiratory support in patients with acute respiratory distress syndrome: an expert opinion [J]. Crit Care, 2017, 21(1): 240.
3
Bellani G, Laffey J, Pham T, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries [J]. JAMA, 2016, 315(8): 788-800.
4
Théry C, Witwer K, Aikawa E, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines [J]. J Extracell Vesicles, 2018, 7(1): 1535750.
5
Shao H, Im H, Castro C, et al. New technologies for analysis of extracellular vesicles [J]. Chem Rev, 2018, 118(4): 1917-1950.
6
O'brien K, Breyne K, Ughetto S, et al. RNA delivery by extracellular vesicles in mammalian cells and its applications [J]. Nat Rev Mol Cell Biol, 2020, 21(10): 585-606.
7
Mathieu M, Martin-Jaular L, Lavieu G, et al. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication [J]. Nat Cell Biol, 2019, 21(1): 9-17.
8
Cossetti C, Iraci N, Mercer T, et al. Extracellular vesicles from neural stem cells transfer IFN-γ via Ifngr1 to activate Stat1 signaling in target cells [J]. Mol Cell, 2014, 56(2): 193-204.
9
Gupta R, Radicioni G, Abdelwahab S, et al. Intercellular communication between airway epithelial cells is mediated by exosome-like vesicles [J]. Am J Respir Cell Mol Biol, 2019, 60(2): 209-220.
10
Matthay M, Zemans R. The acute respiratory distress syndrome: pathogenesis and treatment [J]. Annu Rev Pathol, 2011, 6: 147-163.
11
Buesing K, Densmore J, Kaul S, et al. Endothelial microparticles induce inflammation in acute lung injury [J]. J Surg Res, 2011, 166(1): 32-39.
12
Calfee C, Delucchi K, Sinha P, et al. Acute respiratory distress syndrome subphenotypes and differential response to simvastatin: secondary analysis of a randomised controlled trial [J]. Lancet Respir Med, 2018, 6(9): 691-698.
13
Liu A, Park J, Zhang X, et al. Ex vivo therapeutic effects of hyaluronic acid in bacterial pneumonia in perfused human lungs [J]. Am J Respir Crit Care Med, 2019, 200(10): 1234-1245.
14
Soni S, Wilson M, O'dea K, et al. Alveolar macrophage-derived microvesicles mediate acute lung injury [J]. Thorax, 2016, 71(11): 1020-1029.
15
Ye C, Li H, Bao M, et al. Alveolar macrophage - derived exosomes modulate severity and outcome of acute lung injury [J]. Aging, 2020, 12(7): 6120-6128.
16
Mitra S, Exline M, Habyarimana F, et al. Microparticulate caspase 1 regulates gasdermin D and pulmonary vascular endothelial cell injury [J]. Am J Respir Cell Mol Biol, 2018, 59(1): 56-64.
17
Middleton E, Weyrich A, Zimmerman G. Platelets in pulmonary immune responses and inflammatory lung diseases [J]. Physiol Rev, 2016, 96(4): 1211-1259.
18
Brown G, Mcintyre T. Lipopolysaccharide signaling without a nucleus: kinase cascades stimulate platelet shedding of proinflammatory IL-1β-rich microparticles [J]. J Immunol, 2011, 186(9): 5489-5496.
19
Watanabe J, Marathe G, Neilsen P, et al. Endotoxins stimulate neutrophil adhesion followed by synthesis and release of platelet-activating factor in microparticles [J]. J Biol Chem, 2003, 278(35): 33161-33168.
20
Lee H, Zhang D, Laskin D, et al. Functional evidence of pulmonary extracellular vesicles in infectious and noninfectious lung inflammation [J]. J Immunol, 2018, 201(5): 1500-1509.
21
Kojima M, Gimenes-Junior J, Chan T, et al. Exosomes in postshock mesenteric lymph are key mediators of acute lung injury triggering the macrophage activation via Toll-like receptor 4 [J]. FASEB J, 2018, 32(1): 97-110.
22
Mcvey M, Tabuchi A, Kuebler W. Microparticles and acute lung injury [J]. Am J Physiol Lung Cell Mol Physiol, 2012, 303(5): L364-381.
23
Shaver C, Woods J, Clune J, et al. Circulating microparticle levels are reduced in patients with ARDS [J]. Crit Care, 2017, 21(1): 120.
24
Guervilly C, Lacroix R, Forel J, et al. High levels of circulating leukocyte microparticles are associated with better outcome in acute respiratory distress syndrome [J]. Crit Care, 2011, 15(1): R31.
25
Neudecker V, Brodsky KS, Clambey ET, et al. Neutrophil transfer of miR-223 to lung epithelial cells dampens acute lung injury in mice [J]. Sci Transl Med, 2017, 9(408): eaah5360.
26
Dalli J, Serhan C. Specific lipid mediator signatures of human phagocytes: microparticles stimulate macrophage efferocytosis and pro-resolving mediators [J]. Blood, 2012, 120(15): e60-72.
27
Mohning M, Thomas S, Barthel L, et al. Phagocytosis of microparticles by alveolar macrophages during acute lung injury requires MerTK [J]. Am J Physiol Lung Cell Mol Physiol, 2018, 314(1): L69-L82.
28
Li Z, Scott M, Brzóska T, et al. Lung epithelial cell-derived IL-25 negatively regulates LPS-induced exosome release from macrophages [J]. Mil Med Res, 2018, 5(1): 24.
29
Morrison T, Jackson M, Cunningham E, et al. Mesenchymal stromal cells modulate macrophages in clinically relevant lung injury models by extracellular vesicle mitochondrial transfer [J]. Am J Respir Crit Care Med, 2017, 196(10): 1275-1286.
30
Song Y, Dou H, Li X, et al. Exosomal miR-146a contributes to the enhanced therapeutic efficacy of interleukin-1β-primed mesenchymal stem cells against sepsis [J]. Stem Cell, 2017, 35(5): 1208-1221.
31
Krasnodembskaya A, Samarani G, Song Y, et al. Human mesenchymal stem cells reduce mortality and bacteremia in gram-negative sepsis in mice in part by enhancing the phagocytic activity of blood monocytes [J]. Am J Physiol Lung Cell Mol Physiol, 2012, 302(10): L1003-1013.
32
Hao Q, Gudapati V, Monsel A, et al. Mesenchymal stem cell-derived extracellular vesicles decrease lung injury in mice [J]. J Immunol, 2019, 203(7): 1961-1972.
33
Tang X, Shi L, Monsel A, et al. Mesenchymal stem cell microvesicles attenuate acute lung injury in mice partly mediated by Ang-1 mRNA [J]. Stem cells, 2017, 35(7): 1849-1859.
34
Shah T, Qin S, Vashi M, et al. Alk5/Runx1 signaling mediated by extracellular vesicles promotes vascular repair in acute respiratory distress syndrome [J]. Clin Transl Med, 2018, 7(1): 19.
35
Khatri M, Richardson L, Meulia T. Mesenchymal stem cell-derived extracellular vesicles attenuate influenza virus-induced acute lung injury in a pig model [J]. Stem Cell Res Ther, 2018, 9(1): 17.
36
Islam M, Das S, Emin M, et al. Mitochondrial transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury [J]. Nat Med, 2012, 18(5): 759-765.
37
Lienau J, Müller-Redetzky H, Suttorp N, et al. New pathogenetic concepts and pharmacological studies on adjuvant therapy in severe pneumonia [J]. Pneumologie, 2016, 70(6): 372-378.
38
Lai C, Mardini O, Ericsson M, et al. Dynamic biodistribution of extracellular vesicles in vivo using a multimodal imaging reporter [J]. ACS Nano, 2014, 8(1): 483-494.
[1] 杨桂清, 孟静静. 哺乳期亚临床乳腺炎的研究进展[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 376-379.
[2] 江雅婷, 刘林峰, 沈辰曦, 陈奔, 刘婷, 龚裕强. 组织相关巨噬素3 保护肺血管内皮糖萼治疗急性呼吸窘迫综合征的机制研究[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(05): 353-362.
[3] 李振翮, 魏长青, 甄国栋, 李振富. 脓毒症并发急性呼吸窘迫综合征患者血清S1P、Wnt5a变化及其临床意义[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 293-300.
[4] 吕军好, 林锦雯, 张心怡, 陈江华. 细胞外囊泡在肾移植诊断和治疗中的研究进展[J/OL]. 中华移植杂志(电子版), 2024, 18(03): 186-192.
[5] 刘中文, 刘畅, 高洋, 刘东, 林世庆, 杨建华, 赵福义. 尿液microRNA-326与腹腔镜根治性膀胱切除术治疗膀胱癌患者预后的相关性研究[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 386-391.
[6] 李智, 冯芸. NF-κB 与MAPK 信号通路及其潜在治疗靶点在急性呼吸窘迫综合征中的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 840-843.
[7] 甘志新, 胡雍军, 肖晶, 胡明冬. 降钙素原在脓毒血症与肺部感染中的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 663-666.
[8] 魏丁, 乔艳艳, 顾兴, 张燕, 李艳燕, 钱卫生, 潘蕾, 高永恒, 金发光. 体外膜肺氧合救治急性呼吸窘迫综合征不良预后危险因素分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(03): 363-367.
[9] 季鹏程, 鄂一民, 陆晨, 喻春钊. 循环外泌体相关生物标志物在结直肠癌诊断中的研究进展[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(04): 265-273.
[10] 冯熔熔, 苏晓乐, 王利华. 慢性肾脏病患者并发心血管疾病相关生物标志物研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 273-278.
[11] 张晓青, 唐雯. 基于临床化验指标重新计算的生物标记物在预测腹膜透析患者预后中的作用研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(04): 213-218.
[12] 潘冬生, 梁国标. 颅脑创伤治疗的最新进展与未来趋势[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(04): 193-197.
[13] 王晓霞, 乌丹, 张江英, 乌雅罕, 郝颖楠, 斯日古楞. 《2023 年美国胸科学会关于成人急性呼吸窘迫综合征患者管理的临床实践指南更新》解读[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 338-343.
[14] 杨东星, 沈鹏, 赵慧颖. 免疫球蛋白联合依库珠单抗治疗GBS 并发重度ARDS 患者一例[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 404-408.
[15] 王江波, 尹一鸣, 张冠群. 外周血生物标志物在阿尔茨海默病早期诊断中的价值[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(04): 244-249.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?