切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2021, Vol. 07 ›› Issue (02) : 174 -179. doi: 10.3877/cma.j.issn.2096-1537.2021.02.015

综述

细胞外囊泡在急性呼吸窘迫综合征中潜在作用的研究进展
王皓飞1, 黄英姿1,()   
  1. 1. 210009 南京,江苏省重症医学重点实验室 东南大学附属中大医院重症医学科
  • 收稿日期:2020-11-06 出版日期:2021-05-28
  • 通信作者: 黄英姿
  • 基金资助:
    国家自然科学基金资助项目(81971812); 江苏省自然科学基金项目(BK20191264)

Potential role of extracellular vesicles in acute respiratory distress syndrome

Haofei Wang1, Yingzi Huang1()   

  1. 1. Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, the Affiliated Hospital of Southeast University, Nanjing 210009, China
  • Received:2020-11-06 Published:2021-05-28
  • Corresponding author: Yingzi Huang
引用本文:

王皓飞, 黄英姿. 细胞外囊泡在急性呼吸窘迫综合征中潜在作用的研究进展[J]. 中华重症医学电子杂志, 2021, 07(02): 174-179.

Haofei Wang, Yingzi Huang. Potential role of extracellular vesicles in acute respiratory distress syndrome[J]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2021, 07(02): 174-179.

急性呼吸窘迫综合征(ARDS)是由肺和肺外多种损伤引起的危及生命的疾病,其病死率居高不下,发病机制仍需进一步阐明。近些年的研究表明,失衡的免疫应答在ARDS的发生发展中起重要作用。细胞外囊泡(EVs)是一种细胞分泌的小的无核细胞结构,可以在多种细胞类型间靶向转移多种生物物质,在细胞通讯及物质传递方面起重要作用。近年来对EVs的研究为阐明ARDS的发病机制及其治疗提供了新的思路。本文就EVs在ARDS中的潜在的生物标志物作用和治疗作用的研究进展作一综述,提出不同细胞来源的EVs可能作为ARDS早期识别的生物标志物以及临床治疗的新方向。

Acute respiratory distress syndrome (ARDS) is a life-threatening syndrome caused by pulmonary and extrapulmonary injury. The mortality remains high and the pathogenesis still needs to be further clarified. Recent studies have shown that imbalanced immune responses play an important role in the occurrence and development of ARDS. Extracellular vesicles (EVs) are small non-nucleated cell structures secreted by cells, which can target and transfer a variety of biological substances among various cell types, and play an important role in cell communication and material transfer. In recent years, research on EVs has provided new ideas for the pathogenesis and treatment of ARDS. We review the progress of potential biomarkers and therapeutic effects of EVs in ARDS, and proposes that EVs from different cell sources may be used as biomarkers for early recognition and new management target in ARDS in this manuscript.

1
Matthay M, Zemans R, Zimmerman G, et al. Acute respiratory distress syndrome [J]. Nat Rev Dis Primers, 2019, 5(1): 18.
2
Chiumello D, Brochard L, Marini J, et al. Respiratory support in patients with acute respiratory distress syndrome: an expert opinion [J]. Crit Care, 2017, 21(1): 240.
3
Bellani G, Laffey J, Pham T, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries [J]. JAMA, 2016, 315(8): 788-800.
4
Théry C, Witwer K, Aikawa E, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines [J]. J Extracell Vesicles, 2018, 7(1): 1535750.
5
Shao H, Im H, Castro C, et al. New technologies for analysis of extracellular vesicles [J]. Chem Rev, 2018, 118(4): 1917-1950.
6
O'brien K, Breyne K, Ughetto S, et al. RNA delivery by extracellular vesicles in mammalian cells and its applications [J]. Nat Rev Mol Cell Biol, 2020, 21(10): 585-606.
7
Mathieu M, Martin-Jaular L, Lavieu G, et al. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication [J]. Nat Cell Biol, 2019, 21(1): 9-17.
8
Cossetti C, Iraci N, Mercer T, et al. Extracellular vesicles from neural stem cells transfer IFN-γ via Ifngr1 to activate Stat1 signaling in target cells [J]. Mol Cell, 2014, 56(2): 193-204.
9
Gupta R, Radicioni G, Abdelwahab S, et al. Intercellular communication between airway epithelial cells is mediated by exosome-like vesicles [J]. Am J Respir Cell Mol Biol, 2019, 60(2): 209-220.
10
Matthay M, Zemans R. The acute respiratory distress syndrome: pathogenesis and treatment [J]. Annu Rev Pathol, 2011, 6: 147-163.
11
Buesing K, Densmore J, Kaul S, et al. Endothelial microparticles induce inflammation in acute lung injury [J]. J Surg Res, 2011, 166(1): 32-39.
12
Calfee C, Delucchi K, Sinha P, et al. Acute respiratory distress syndrome subphenotypes and differential response to simvastatin: secondary analysis of a randomised controlled trial [J]. Lancet Respir Med, 2018, 6(9): 691-698.
13
Liu A, Park J, Zhang X, et al. Ex vivo therapeutic effects of hyaluronic acid in bacterial pneumonia in perfused human lungs [J]. Am J Respir Crit Care Med, 2019, 200(10): 1234-1245.
14
Soni S, Wilson M, O'dea K, et al. Alveolar macrophage-derived microvesicles mediate acute lung injury [J]. Thorax, 2016, 71(11): 1020-1029.
15
Ye C, Li H, Bao M, et al. Alveolar macrophage - derived exosomes modulate severity and outcome of acute lung injury [J]. Aging, 2020, 12(7): 6120-6128.
16
Mitra S, Exline M, Habyarimana F, et al. Microparticulate caspase 1 regulates gasdermin D and pulmonary vascular endothelial cell injury [J]. Am J Respir Cell Mol Biol, 2018, 59(1): 56-64.
17
Middleton E, Weyrich A, Zimmerman G. Platelets in pulmonary immune responses and inflammatory lung diseases [J]. Physiol Rev, 2016, 96(4): 1211-1259.
18
Brown G, Mcintyre T. Lipopolysaccharide signaling without a nucleus: kinase cascades stimulate platelet shedding of proinflammatory IL-1β-rich microparticles [J]. J Immunol, 2011, 186(9): 5489-5496.
19
Watanabe J, Marathe G, Neilsen P, et al. Endotoxins stimulate neutrophil adhesion followed by synthesis and release of platelet-activating factor in microparticles [J]. J Biol Chem, 2003, 278(35): 33161-33168.
20
Lee H, Zhang D, Laskin D, et al. Functional evidence of pulmonary extracellular vesicles in infectious and noninfectious lung inflammation [J]. J Immunol, 2018, 201(5): 1500-1509.
21
Kojima M, Gimenes-Junior J, Chan T, et al. Exosomes in postshock mesenteric lymph are key mediators of acute lung injury triggering the macrophage activation via Toll-like receptor 4 [J]. FASEB J, 2018, 32(1): 97-110.
22
Mcvey M, Tabuchi A, Kuebler W. Microparticles and acute lung injury [J]. Am J Physiol Lung Cell Mol Physiol, 2012, 303(5): L364-381.
23
Shaver C, Woods J, Clune J, et al. Circulating microparticle levels are reduced in patients with ARDS [J]. Crit Care, 2017, 21(1): 120.
24
Guervilly C, Lacroix R, Forel J, et al. High levels of circulating leukocyte microparticles are associated with better outcome in acute respiratory distress syndrome [J]. Crit Care, 2011, 15(1): R31.
25
Neudecker V, Brodsky KS, Clambey ET, et al. Neutrophil transfer of miR-223 to lung epithelial cells dampens acute lung injury in mice [J]. Sci Transl Med, 2017, 9(408): eaah5360.
26
Dalli J, Serhan C. Specific lipid mediator signatures of human phagocytes: microparticles stimulate macrophage efferocytosis and pro-resolving mediators [J]. Blood, 2012, 120(15): e60-72.
27
Mohning M, Thomas S, Barthel L, et al. Phagocytosis of microparticles by alveolar macrophages during acute lung injury requires MerTK [J]. Am J Physiol Lung Cell Mol Physiol, 2018, 314(1): L69-L82.
28
Li Z, Scott M, Brzóska T, et al. Lung epithelial cell-derived IL-25 negatively regulates LPS-induced exosome release from macrophages [J]. Mil Med Res, 2018, 5(1): 24.
29
Morrison T, Jackson M, Cunningham E, et al. Mesenchymal stromal cells modulate macrophages in clinically relevant lung injury models by extracellular vesicle mitochondrial transfer [J]. Am J Respir Crit Care Med, 2017, 196(10): 1275-1286.
30
Song Y, Dou H, Li X, et al. Exosomal miR-146a contributes to the enhanced therapeutic efficacy of interleukin-1β-primed mesenchymal stem cells against sepsis [J]. Stem Cell, 2017, 35(5): 1208-1221.
31
Krasnodembskaya A, Samarani G, Song Y, et al. Human mesenchymal stem cells reduce mortality and bacteremia in gram-negative sepsis in mice in part by enhancing the phagocytic activity of blood monocytes [J]. Am J Physiol Lung Cell Mol Physiol, 2012, 302(10): L1003-1013.
32
Hao Q, Gudapati V, Monsel A, et al. Mesenchymal stem cell-derived extracellular vesicles decrease lung injury in mice [J]. J Immunol, 2019, 203(7): 1961-1972.
33
Tang X, Shi L, Monsel A, et al. Mesenchymal stem cell microvesicles attenuate acute lung injury in mice partly mediated by Ang-1 mRNA [J]. Stem cells, 2017, 35(7): 1849-1859.
34
Shah T, Qin S, Vashi M, et al. Alk5/Runx1 signaling mediated by extracellular vesicles promotes vascular repair in acute respiratory distress syndrome [J]. Clin Transl Med, 2018, 7(1): 19.
35
Khatri M, Richardson L, Meulia T. Mesenchymal stem cell-derived extracellular vesicles attenuate influenza virus-induced acute lung injury in a pig model [J]. Stem Cell Res Ther, 2018, 9(1): 17.
36
Islam M, Das S, Emin M, et al. Mitochondrial transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury [J]. Nat Med, 2012, 18(5): 759-765.
37
Lienau J, Müller-Redetzky H, Suttorp N, et al. New pathogenetic concepts and pharmacological studies on adjuvant therapy in severe pneumonia [J]. Pneumologie, 2016, 70(6): 372-378.
38
Lai C, Mardini O, Ericsson M, et al. Dynamic biodistribution of extracellular vesicles in vivo using a multimodal imaging reporter [J]. ACS Nano, 2014, 8(1): 483-494.
[1] 罗丹, 孔为民, 陈姝宁, 赵小玲, 谢云凯. 子宫内膜异位症患者在位及异位内膜上皮细胞-间充质转化相关生物标志物的变化[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 530-539.
[2] 代雯荣, 赵丽娟, 李智慧. 细胞外囊泡对胚胎着床影响的研究进展[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 616-620.
[3] 魏徐, 张鸽, 伍金林. 新生儿脓毒症相关性凝血病的监测和治疗[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 379-386.
[4] 李越洲, 张孔玺, 李小红, 商中华. 基于生物信息学分析胃癌中PUM的预后意义[J]. 中华普通外科学文献(电子版), 2023, 17(06): 426-432.
[5] 李腾成, 狄金明. 2023 V1版前列腺癌NCCN指南更新要点解读[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 313-318.
[6] 王邦郁, 陈晓鹏, 唐国军, 王佳妮. 尿液细胞外囊泡circRNA分类器对高级别前列腺癌诊断价值的初步研究[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 339-342.
[7] 罗婷, 张实. 5种生物标志物对ARDS预后的预测分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 471-475.
[8] 陈坤, 何傅梅, 方婷, 陈文瑞. 血清sCD73与EGFR/ALK野生型非小细胞肺癌免疫治疗效果的相关性分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 504-507.
[9] 李伟, 卓剑, 黄川, 黄有攀. Lac、HO-1、sRAGE、CRP/ALB表达及脓毒症并发ARDS危险因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 514-516.
[10] 饶林静, 罗皓梨, 钟山. 不同时长PPV在体外循环心脏大血管术后并发ARDS中的临床应用[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 575-577.
[11] 刘小燕, 龙乾发, 席俊秀, 杜明皓, 黄晓欢. 细胞外囊泡介导的胶质细胞交互作用对神经炎症的调节意义及研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 235-241.
[12] 陈安, 冯娟, 杨振宇, 杜锡林, 柏强善, 阴继凯, 臧莉, 鲁建国. 基于生物信息学分析CCN4在肝细胞癌中表达及其临床意义[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 702-707.
[13] 吴蓉菊, 向平超. COPD频繁急性加重表型与炎性因子相关性研究[J]. 中华临床医师杂志(电子版), 2023, 17(9): 939-947.
[14] 蔡荇, 郑瑞强. 肝素结合蛋白在脓毒症中的应用及研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(04): 487-490.
[15] 郭芳芳, 李珉珉. 狼疮肾炎无创生物标志物的研究进展[J]. 中华诊断学电子杂志, 2023, 11(04): 271-275.
阅读次数
全文


摘要