切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2024, Vol. 10 ›› Issue (03) : 248 -252. doi: 10.3877/cma.j.issn.2096-1537.2024.03.007

综述

单细胞测序在急性呼吸窘迫综合征中的应用进展
杨永红1, 杨莹1, 齐红蕾1, 刘福瑞1, 朱金源2,()   
  1. 1. 750004 宁夏,宁夏医科大学第一临床医学院
    2. 750004 宁夏,宁夏医科大学总医院重症医学科
  • 收稿日期:2024-02-03 出版日期:2024-08-28
  • 通信作者: 朱金源
  • 基金资助:
    国家自然科学基金项目(82360022); 宁夏重点研发计划项目(2022BEG03102); 宁夏自然科学基金项目(2022AAC03466)

Application of single-cell sequencing in acute respiratory distress syndrome

Yonghong Yang1, Ying Yang1, Honglei Qi1, Furui Liu1, Jinyuan Zhu2,()   

  1. 1. College of First Clinical Medical, Ningxia Medical University, Yinchuan 750004, China
    2. Department of Intensive Care Medicine, General Hospital of Ningxia Medical University, Yinchuan 750004, China
  • Received:2024-02-03 Published:2024-08-28
  • Corresponding author: Jinyuan Zhu
引用本文:

杨永红, 杨莹, 齐红蕾, 刘福瑞, 朱金源. 单细胞测序在急性呼吸窘迫综合征中的应用进展[J/OL]. 中华重症医学电子杂志, 2024, 10(03): 248-252.

Yonghong Yang, Ying Yang, Honglei Qi, Furui Liu, Jinyuan Zhu. Application of single-cell sequencing in acute respiratory distress syndrome[J/OL]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2024, 10(03): 248-252.

急性呼吸窘迫综合征(ARDS)是由肺内和肺外因素所致的弥漫性炎性肺泡及肺毛细血管损伤为特征的临床综合征。ARDS发病机制复杂,细胞间普遍存在异质性,传统测序技术是以大量细胞或组织为研究样本,反映的是细胞总体上转录组特征,无法体现生物细胞亚群多样性和个体细胞的异质性,限制了疾病潜在靶点的发掘和应用。单细胞测序为深入研究ARDS单个细胞的独特基因表达模式和分子机制提供了新的手段,对了解ARDS的发病机制、临床特征、筛选潜在治疗靶点,具有重要意义。该综述为单细胞测序在ARDS中的应用提供了更多依据。

Acute respiratory distress syndrome (ARDS) is a clinical syndrome characterized by diffuse inflammatory alveolar and pulmonary capillary injury caused by both pulmonary and extrapulmonary factors. Due to the complexity of the pathogenesis and widespread heterogeneity at the cellular level, traditional sequencing techniques, which use many cells or tissues as study samples, reflect the overall transcriptomic characteristics of cells but cannot capture the diversity of cellular subgroups and individual cell heterogeneity. This limitation hinders the exploration and application of potential disease targets. Single-cell sequencing provides a new approach to investigate the unique gene expression patterns and molecular mechanisms of individual cells in ARDS. It is crucial for understanding the pathogenesis, clinical features, and identification of potential therapeutic targets in ARDS. This review offers additional insights into the application of single cell sequencing in ARDS, providing a more solid foundation for research in this field.

1
Matthay MA, Arabi Y, Arroliga AC, et al. A new global definition of acute respiratory distress syndrome [J]. Am J Respir Crit Care Med, 2024, 209(1): 37-47.
2
Kumar V. Pulmonary innate immune response determines the outcome of inflammation during pneumonia and sepsis-associated acute lung injury [J]. Front Immunol, 2020, 11: 1722.
3
Zhu W, Zhang Y, Wang Y. Immunotherapy strategies and prospects for acute lung injury: Focus on immune cells and cytokines [J]. Front Pharmacol, 2022, 13: 1103309.
4
Saki N, Javan M, Moghimian-Boroujeni B, et al. Interesting effects of interleukins and immune cells on acute respiratory distress syndrome [J]. Clin Exp Med, 2023, 23(7): 2979-2996.
5
Tao H, Xu Y, Zhang S. The role of macrophages and alveolar epithelial cells in the development of ARDS [J]. Inflammation, 2023, 46(1): 47-55.
6
Quach C, Helou DG, Li M, et al. Enhancing autophagy in CD11c+ antigen-presenting cells as a therapeutic strategy for acute respiratory distress syndrome [J]. Cell Rep, 2023, 42(8): 112990.
7
Conte MI, Fuentes-Trillo A, Domínguez Conde C. Opportunities and tradeoffs in single-cell transcriptomic technologies [J]. Trends Genet, 2024, 40(1): 83-93.
8
Lu J, Sheng Y, Qian W, et al. scRNA-seq data analysis method to improve analysis performance [J]. IET Nanobiotechnol, 2023, 17(3): 246-256.
9
Tang W, Li M, Teng F, et al. Single-cell RNA-sequencing in asthma research [J]. Front Immunol, 2022, 13: 988573.
10
Li H, Wang H, Sokulsky L, et al. Single-cell transcriptomic analysis reveals key immune cell phenotypes in the lungs of patients with asthma exacerbation [J]. J Allergy Clin Immunol, 2021, 147(3): 941-954.
11
Stephenson E, Reynolds G, Botting RA, et al. Single-cell multi-omics analysis of the immune response in COVID-19 [J]. Nat Med, 2021, 27(5): 904-916.
12
Yang R, Zheng T, Xiang H, et al. Lung single-cell RNA profiling reveals response of pulmonary capillary to sepsis-induced acute lung injury [J]. Front Immunol, 2024, 15: 1308915.
13
Armstead BE, Lee CS, Chen Y, et al. Application of single cell multiomics points to changes in chromatin accessibility near calcitonin receptor like receptor and a possible role for adrenomedullin in the post-shock lung [J]. Front Med (Lausanne), 2023, 10: 1003121.
14
Godoy RS, Cober ND, Cook DP, et al. Single-cell transcriptomic atlas of lung microvascular regeneration after targeted endothelial cell ablation [J]. Elife, 2023, 12: e80900.
15
Schupp JC, Adams TS, Cosme C, et al. Integrated single-cell atlas of endothelial cells of the human lung [J]. Circulation, 2021, 144(4): 286-302.
16
Costa Monteiro AC, Matthay MA. Are circulating endothelial cells the next target for transcriptome-level pathway analysis in ARDS? [J]. Am J Physiol Lung Cell Mol Physiol, 2023, 324(4): L393-L399.
17
Grunwell JR, Rad MG, Stephenson ST, et al. Machine learning-based discoveryof a gene expression signature in pediatric acute respiratory distress syndrome [J]. Crit Care Explor, 2021, 3(6): e0431.
18
He D, Yu Q, Zeng X, et al. Single-cell RNA sequencing and transcriptome analysis revealed the immune microenvironment and gene markers of acute respiratory distress syndrome [J]. J Inflamm Res, 2023, 16: 3205-3217.
19
Mo J, Yang Y, Feng J, et al. Single-cell analysis reveals dysregulated inflammatory response in peripheral blood immunity in patients with acute respiratory distress syndrome [J]. Front Cell Dev Biol, 2023, 11: 1199122.
20
Jiang Y, Rosborough BR, Chen J, et al. Single cell RNA sequencing identifies an early monocyte gene signature in acute respiratory distress syndrome [J]. JCI Insight, 2020, 5(13): e135678.
21
Lin S, Yue X, Wu H, et al. Explore potential plasma biomarkers of acute respiratory distress syndrome (ARDS) using GC-MS metabolomics analysis [J]. Clin Biochem, 2019, 66: 49-56.
22
Metwaly SM, Winston BW. Systems biology ARDS research with a focus on metabolomics [J]. Metabolites, 2020, 10(5): 207.
23
Rogers AJ, Leligdowicz A, Contrepois K, et al. Plasma metabolites in early sepsis identify distinct clusters defined by plasma lipids [J]. Crit Care Explor, 2021, 3(8): e0478.
24
Viswan A, Ghosh P, Gupta D,et al. Distinct metabolic endotype mirroring acute respiratory distress syndrome (ARDS) subphenotype and its heterogeneous biology [J]. Sci Rep, 2019, 9(1): 2108.
25
Matthay MA, Zemans RL, Zimmerman GA, et al. Acute respiratory distress syndrome [J]. Nat Rev Dis Primers, 2019, 5(1): 18.
26
Chen X, Tang J, Shuai W, et al. Macrophage polarization and its role in the pathogenesis of acute lung injury/acute respiratory distress syndrome [J]. Inflamm Res, 2020, 69(9): 883-895.
27
Mills CD. M1 and M2 macrophages: oracles of health and disease [J]. Crit Rev Immunol, 2012, 32(6): 463-488.
28
Dang W, Tao Y, Xu X, et al. The role of lung macrophages in acute respiratory distress syndrome [J]. Inflamm Res, 2022, 71(12): 1417-1432.
29
Wang L, Wang D, Zhang T, et al. The role of immunometabolism in macrophage polarization and its impact on acute lung injury/acute respiratory distress syndrome [J]. Front Immunol, 2023, 14: 1117548.
30
Li X, Kolling FW, Aridgides D, et al. ScRNA-seq expression of IFI27 and APOC2 identifies four alveolar macrophage superclusters in healthy BALF [J]. Life Sci Alliance, 2022, 5(11): e202201458.
31
高超, 巢杰, 邱海波. T-bet:脓毒症免疫失衡中Th17细胞的新型调节分子 [J/OL]. 中华重症医学电子杂志, 2023, 9(3): 280-285.
32
Thomas R, Qiao S, Yang X. Th17/Treg imbalance: implications in lung inflammatory diseases [J]. Int J Mol Sci, 2023, 24(5): 4865.
33
Zhu C, Weng QY, Zhou LR, et al. Homeostatic and early-recruited CD101- eosinophils suppress endotoxin-induced acute lung injury [J]. Eur Respir J, 2020, 56(5): 1902354.
[1] 江雅婷, 刘林峰, 沈辰曦, 陈奔, 刘婷, 龚裕强. 组织相关巨噬素3 保护肺血管内皮糖萼治疗急性呼吸窘迫综合征的机制研究[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(05): 353-362.
[2] 李振翮, 魏长青, 甄国栋, 李振富. 脓毒症并发急性呼吸窘迫综合征患者血清S1P、Wnt5a变化及其临床意义[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 293-300.
[3] 刘欢, 邢皓, 常正奇, 张记. 机械敏感性离子通道蛋白Piezo1在感染相关疾病中的研究进展[J/OL]. 中华实验和临床感染病杂志(电子版), 2024, 18(05): 263-269.
[4] 李智, 冯芸. NF-κB 与MAPK 信号通路及其潜在治疗靶点在急性呼吸窘迫综合征中的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 840-843.
[5] 王大伟, 陆雅斐, 皇甫少华, 陈玉婷, 陈澳, 江滨. 间充质干细胞通过调控免疫机制促进创面愈合的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 361-366.
[6] 梅杰, 徐瑞, 蔡芸, 朱一超. 纤维化对肿瘤浸润免疫细胞的影响——“硬冷肿瘤”的形成[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 257-263.
[7] 张杰, 田广磊, 陈雄. 基于生物信息学分析探讨肝癌BRD4与预后关系及其ceRNA调控网络构建[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(04): 568-576.
[8] 林玲, 李京儒, 沈瑞华, 林惠, 乔晞. 基于生物信息学分析小鼠急性肾损伤和急性肺损伤的枢纽基因[J/OL]. 中华肾病研究电子杂志, 2024, 13(03): 134-144.
[9] 王晓霞, 乌丹, 张江英, 乌雅罕, 郝颖楠, 斯日古楞. 《2023 年美国胸科学会关于成人急性呼吸窘迫综合征患者管理的临床实践指南更新》解读[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 338-343.
[10] 杨东星, 沈鹏, 赵慧颖. 免疫球蛋白联合依库珠单抗治疗GBS 并发重度ARDS 患者一例[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 404-408.
[11] 倪韫晖, 杨毅, 袁雪燕, 邱海波. 胸壁加压在急性呼吸窘迫综合征中的应用和临床进展[J/OL]. 中华重症医学电子杂志, 2024, 10(03): 243-247.
[12] 李松栗, 黄蔚, 巢杰, 杨毅, 邱海波. 单核/巨噬细胞来源的细胞外囊泡在急性呼吸窘迫综合征中的研究进展[J/OL]. 中华重症医学电子杂志, 2024, 10(03): 253-257.
[13] 田学, 谢晖, 王瑞兰. 急性呼吸窘迫综合征相关肺纤维化的研究进展[J/OL]. 中华重症医学电子杂志, 2024, 10(03): 258-264.
[14] 杨麦青, 张云香. 胃癌化疗后浆膜腔大B细胞淋巴瘤一例报道并文献复习[J/OL]. 中华诊断学电子杂志, 2024, 12(03): 183-187.
[15] 孙冠超, 万军, 石卉. IgG相关食物不耐受与肠道免疫微环境相关性的研究进展[J/OL]. 中华胃肠内镜电子杂志, 2024, 11(03): 200-203.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?