切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2024, Vol. 10 ›› Issue (03) : 243 -247. doi: 10.3877/cma.j.issn.2096-1537.2024.03.006

综述

胸壁加压在急性呼吸窘迫综合征中的应用和临床进展
倪韫晖1, 杨毅1, 袁雪燕1, 邱海波1,()   
  1. 1. 210009 南京,江苏省重症医学重点实验室 东南大学附属中大医院重症医学科
  • 收稿日期:2023-06-05 出版日期:2024-08-28
  • 通信作者: 邱海波
  • 基金资助:
    国家自然科学基金重点项目(81930058); 国家自然科学基金专项(82341032); 科技部国家重点研发计划项目(2022YFC2504400)

Clinical research progress of external chest-wall compression in acute respiratory distress syndrome

Yunhui Ni1, Yi Yang1, Xueyan Yuan1, Haibo Qiu1,()   

  1. 1. Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
  • Received:2023-06-05 Published:2024-08-28
  • Corresponding author: Haibo Qiu
引用本文:

倪韫晖, 杨毅, 袁雪燕, 邱海波. 胸壁加压在急性呼吸窘迫综合征中的应用和临床进展[J]. 中华重症医学电子杂志, 2024, 10(03): 243-247.

Yunhui Ni, Yi Yang, Xueyan Yuan, Haibo Qiu. Clinical research progress of external chest-wall compression in acute respiratory distress syndrome[J]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2024, 10(03): 243-247.

在新型冠状病毒感染(COVID-19)引起的急性呼吸窘迫综合征(ARDS)中,恰当地对胸壁施加外部压力可能会产生益处,这对传统的肺保护性通气策略构成了挑战。近年来,许多研究显示胸壁加压可以改善部分ARDS患者的氧合及呼吸力学,但是胸壁加压的治疗价值仍存在争议。本文主要就胸壁加压的生理学效应、实施方法及临床应用等方面作一综述。

In managing novel coronavirus disease 2019 (COVID-19) associated acute respiratory distress syndrome (ARDS) patients, proper external chest-wall compression may be beneficial, making it a big challenge to rethink about traditional lung protective ventilation strategies. In recent years, many studies have shown that external chest-wall compression can improve oxygenation and respiratory mechanics in ARDS patients, but therapeutic result remains controversial. This article mainly reviews physiological effects, implementation methods and clinical applications of chest wall compression.

表1 胸壁加压的方式及其对氧合及呼吸力学的影响
1
Meyer NJ, Gattinoni L, Calfee CS. Acute respiratory distress syndrome [J]. Lancet, 2021, 398(10300): 622-637.
2
Pfeifer F, Schreiter D, Laudi S, et al. Lung-protective ventilation strategy [J]. Anasthesiol Intensivmed, 2009, 50: 464.
3
Samanta S, Samanta S, Soni KD. Supine chest compression: alternative to prone ventilation in acute respiratory distress syndrome [J]. Am J Emerg Med, 2014, 32(5): 489.e5-e6.
4
Bottino N, Panigada M, Chiumello D, et al. Effects of artificial changes in chest wall compliance on respiratory mechanics and gas exchange in patients with acute lung injury (ALI) [J]. Crit Care, 2000, 4(1): 117.
5
Carteaux G, Tuffet S, Mekontso Dessap A. Potential protective effects of continuous anterior chest compression in the acute respiratory distress syndrome: physiology of an illustrative case [J]. Crit Care, 2021, 25(1): 187.
6
Kummer RL, Shapiro RS, Marini JJ, et al. Paradoxically improved respiratory compliance with abdominal compression in COVID-19 ARDS [J]. Chest, 2021, 160(5): 1739-1742.
7
Lassola S, Miori S, Sanna A, et al. Effect of chest wall loading during supine and prone position in a critically ill covid-19 patient: a new strategy for ARDS? [J]. Crit Care, 2021, 25(1): 442.
8
Rezoagli E, Bastia L, Grassi A, et al. Paradoxical effect of chest wall compression on respiratory system compliance [J]. Chest, 2021, 160(4): 1335-1339.
9
Selickman J, Tawfik P, Crooke PS, et al. Paradoxical response to chest wall loading predicts a favorable mechanical response to reduction in tidal volume or PEEP [J]. Crit Care, 2022, 26(1): 201.
10
Bastia L, Rezoagli E, Guarnieri M, et al. External chest-wall compression in prolonged COVID-19 ARDS with low-compliance: a physiological study [J]. Ann Intensive Care, 2022, 12(1): 35.
11
Umbrello M, Lassola S, Sanna A, et al. Chest wall loading during supine and prone position in patients with COVID-19 ARDS: effects on respiratory mechanics and gas exchange [J]. Crit Care, 2022, 26(1): 277.
12
Marini JJ, Gattinoni L. Improving lung compliance by external compression of the chest wall [J]. Crit Care, 2021, 25(1): 264.
13
Grimby G, Hedenstierna G, Lofstrom B. Chest wall mechanics during artificial-ventilation [J]. J Appl Physiol, 1975, 38(4): 576-580.
14
Albert RK, Hubmayr RD. The prone position eliminates compression of the lungs by the heart [J]. Am J Respir Crit Care Med, 2000, 161(5): 1660-1665.
15
Marini JJ, Tyler ML, Hudson LD, et al. Influence of head-dependent positions on lung-volume and oxygen-saturation in chronic air-flow obstruction [J]. Am Rev Respir Dis, 1984, 129(1): 101-105.
16
Marini JJ, Gattinoni L. Time course of evolving ventilator-induced lung injury: the "shrinking baby lung" [J]. Crit Care Med, 2020, 48(8): 1203-1209.
17
Gattinoni L, Busana M, Camporota L, et al. COVID-19 and ARDS: the baby lung size matters [J]. Intensive Care Med, 2021, 47(1): 133-134.
18
Hart N, Laffont I, de la Sota AP, et al. Respiratory effects of combined truncal and abdominal support in patients with spinal cord injury [J]. Arch Phys Med Rehabil, 2005, 86(7): 1447-1451.
19
Ambrose AB, Detelich JF, Weinmann M, et al. Evaluation of a pneumatic vest to treat symptoms of ARDS caused by COVID-19 [J]. J Med Devices-Trans Asme, 2022, 16(1): 011004.
20
Marini JJ, Selickman J. Bedside detection of end-tidal hyperinflation in acute respiratory distress syndrome [J]. Ann Am Thorac Soc, 2022, 19(11): 1791-1795.
21
Selickman J, Marini JJ. Chest wall loading in the ICU: pushes, weights, and positions [J]. Ann Intensive Care, 2022, 12(1): 103.
22
Terragni PP, Rosboch G, Tealdi A, et al. Tidal hyperinflation during low tidal volume ventilation in acute respiratory distress syndrome [J]. Am J Respir Crit Care Med, 2007, 175(2): 160-166.
23
Rossi S, Palumbo MM, Sverzellati N, et al. Mechanisms of oxygenation responses to proning and recruitment in COVID-19 pneumonia [J]. Intensive Care Med, 2022, 48(1): 56-66.
24
Marini JJ, Rocco PRM, Gattinoni L. Static and dynamic contributors to ventilator-induced lung injury in clinical practice pressure, energy, and power [J]. Am J Respir Crit Care Med, 2020, 201(7): 767-774.
[1] 杨茂宪, 沈鹏, 王倩倩, 吴旺, 沈永帅, 蒋禛, 徐龙生, 朱建刚, 刘倍倍. 吡啶甲酸镁联合地塞米松对急性呼吸窘迫综合征大鼠的治疗作用研究[J]. 中华危重症医学杂志(电子版), 2024, 17(03): 196-203.
[2] 魏丁, 乔艳艳, 顾兴, 张燕, 李艳燕, 钱卫生, 潘蕾, 高永恒, 金发光. 体外膜肺氧合救治急性呼吸窘迫综合征不良预后危险因素分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(03): 363-367.
[3] 彭祺, 马丽娜, 李倩倩, 陈旭. 重症病毒性肺炎机械通气脱机的影响因素分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(02): 260-263.
[4] 叶观生, 黄潘文, 莫伟良, 钟许昌. 序贯NCPAP、HHFNC对肺炎并发呼吸衰竭氧合指数的影响[J]. 中华肺部疾病杂志(电子版), 2024, 17(01): 99-102.
[5] 庞丹, 孙刚, 伊乐, 丁立云, 钟美艳, 张杰, 于婷婷, 郭乐峰. 血清HIF-1α、VEGF、Flt-1的检测对ARDS的预后及临床意义[J]. 中华肺部疾病杂志(电子版), 2024, 17(01): 127-130.
[6] 刘悦, 潘纯. 急性呼吸窘迫综合征患者肌松剂滴定的必要性与可行性[J]. 中华重症医学电子杂志, 2024, 10(02): 108-112.
[7] 王永广, 朱鹏, 许千金, 甘桂芬, 石钟山, 潘纯. 急性呼吸窘迫综合征诊断标准亟需更新[J]. 中华重症医学电子杂志, 2024, 10(02): 113-117.
[8] 史楠, 袁雪燕, 邱海波. 肺复张在急性呼吸窘迫综合征中的应用和临床进展[J]. 中华重症医学电子杂志, 2024, 10(02): 118-126.
[9] 孙藏岚, 黄丽丽, 李小雨, 邱海波. 脂质组学在急性呼吸窘迫综合征中的应用和临床进展[J]. 中华重症医学电子杂志, 2024, 10(02): 127-135.
[10] 王晶晶, 谢晖, 邓璞钰, 张晨晨, 田学, 谢云, 王瑞兰. 新型冠状病毒感染ARDS患者EIT监测下俯卧位通气成像的改变[J]. 中华重症医学电子杂志, 2024, 10(01): 31-37.
[11] 李浩南, 张煜彭, 付焱, 冯继伟, 刘凯, 张文凯. 缝隙连接蛋白43在肺部疾病中的研究进展[J]. 中华重症医学电子杂志, 2024, 10(01): 60-65.
[12] 卢梦诗, 刘威, 马加威, 嵇丹丹, 贾璇, 詹心萍, 罗亮. 人工智能在急性呼吸窘迫综合征领域的应用进展[J]. 中华重症医学电子杂志, 2024, 10(01): 66-71.
[13] 陈含冰, 储翠林, 邱海波. 急性呼吸窘迫综合征中巨噬细胞死亡方式的研究进展[J]. 中华重症医学电子杂志, 2024, 10(01): 79-84.
[14] 王吉, 张颖, 顾雪, 杨朋磊, 陈齐红. 间充质干细胞微泡对ARDS肺纤维化影响的实验研究[J]. 中华临床医师杂志(电子版), 2024, 18(01): 72-78.
[15] 计超, 向群. 乙酰胆碱受体对急性呼吸窘迫综合征小鼠T细胞亚群和炎症因子的影响[J]. 中华诊断学电子杂志, 2024, 12(01): 50-56.
阅读次数
全文


摘要