切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2024, Vol. 10 ›› Issue (03) : 243 -247. doi: 10.3877/cma.j.issn.2096-1537.2024.03.006

综述

胸壁加压在急性呼吸窘迫综合征中的应用和临床进展
倪韫晖1, 杨毅1, 袁雪燕1, 邱海波1,()   
  1. 1. 210009 南京,江苏省重症医学重点实验室 东南大学附属中大医院重症医学科
  • 收稿日期:2023-06-05 出版日期:2024-08-28
  • 通信作者: 邱海波
  • 基金资助:
    国家自然科学基金重点项目(81930058); 国家自然科学基金专项(82341032); 科技部国家重点研发计划项目(2022YFC2504400)

Clinical research progress of external chest-wall compression in acute respiratory distress syndrome

Yunhui Ni1, Yi Yang1, Xueyan Yuan1, Haibo Qiu1,()   

  1. 1. Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
  • Received:2023-06-05 Published:2024-08-28
  • Corresponding author: Haibo Qiu
引用本文:

倪韫晖, 杨毅, 袁雪燕, 邱海波. 胸壁加压在急性呼吸窘迫综合征中的应用和临床进展[J/OL]. 中华重症医学电子杂志, 2024, 10(03): 243-247.

Yunhui Ni, Yi Yang, Xueyan Yuan, Haibo Qiu. Clinical research progress of external chest-wall compression in acute respiratory distress syndrome[J/OL]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2024, 10(03): 243-247.

在新型冠状病毒感染(COVID-19)引起的急性呼吸窘迫综合征(ARDS)中,恰当地对胸壁施加外部压力可能会产生益处,这对传统的肺保护性通气策略构成了挑战。近年来,许多研究显示胸壁加压可以改善部分ARDS患者的氧合及呼吸力学,但是胸壁加压的治疗价值仍存在争议。本文主要就胸壁加压的生理学效应、实施方法及临床应用等方面作一综述。

In managing novel coronavirus disease 2019 (COVID-19) associated acute respiratory distress syndrome (ARDS) patients, proper external chest-wall compression may be beneficial, making it a big challenge to rethink about traditional lung protective ventilation strategies. In recent years, many studies have shown that external chest-wall compression can improve oxygenation and respiratory mechanics in ARDS patients, but therapeutic result remains controversial. This article mainly reviews physiological effects, implementation methods and clinical applications of chest wall compression.

表1 胸壁加压的方式及其对氧合及呼吸力学的影响
1
Meyer NJ, Gattinoni L, Calfee CS. Acute respiratory distress syndrome [J]. Lancet, 2021, 398(10300): 622-637.
2
Pfeifer F, Schreiter D, Laudi S, et al. Lung-protective ventilation strategy [J]. Anasthesiol Intensivmed, 2009, 50: 464.
3
Samanta S, Samanta S, Soni KD. Supine chest compression: alternative to prone ventilation in acute respiratory distress syndrome [J]. Am J Emerg Med, 2014, 32(5): 489.e5-e6.
4
Bottino N, Panigada M, Chiumello D, et al. Effects of artificial changes in chest wall compliance on respiratory mechanics and gas exchange in patients with acute lung injury (ALI) [J]. Crit Care, 2000, 4(1): 117.
5
Carteaux G, Tuffet S, Mekontso Dessap A. Potential protective effects of continuous anterior chest compression in the acute respiratory distress syndrome: physiology of an illustrative case [J]. Crit Care, 2021, 25(1): 187.
6
Kummer RL, Shapiro RS, Marini JJ, et al. Paradoxically improved respiratory compliance with abdominal compression in COVID-19 ARDS [J]. Chest, 2021, 160(5): 1739-1742.
7
Lassola S, Miori S, Sanna A, et al. Effect of chest wall loading during supine and prone position in a critically ill covid-19 patient: a new strategy for ARDS? [J]. Crit Care, 2021, 25(1): 442.
8
Rezoagli E, Bastia L, Grassi A, et al. Paradoxical effect of chest wall compression on respiratory system compliance [J]. Chest, 2021, 160(4): 1335-1339.
9
Selickman J, Tawfik P, Crooke PS, et al. Paradoxical response to chest wall loading predicts a favorable mechanical response to reduction in tidal volume or PEEP [J]. Crit Care, 2022, 26(1): 201.
10
Bastia L, Rezoagli E, Guarnieri M, et al. External chest-wall compression in prolonged COVID-19 ARDS with low-compliance: a physiological study [J]. Ann Intensive Care, 2022, 12(1): 35.
11
Umbrello M, Lassola S, Sanna A, et al. Chest wall loading during supine and prone position in patients with COVID-19 ARDS: effects on respiratory mechanics and gas exchange [J]. Crit Care, 2022, 26(1): 277.
12
Marini JJ, Gattinoni L. Improving lung compliance by external compression of the chest wall [J]. Crit Care, 2021, 25(1): 264.
13
Grimby G, Hedenstierna G, Lofstrom B. Chest wall mechanics during artificial-ventilation [J]. J Appl Physiol, 1975, 38(4): 576-580.
14
Albert RK, Hubmayr RD. The prone position eliminates compression of the lungs by the heart [J]. Am J Respir Crit Care Med, 2000, 161(5): 1660-1665.
15
Marini JJ, Tyler ML, Hudson LD, et al. Influence of head-dependent positions on lung-volume and oxygen-saturation in chronic air-flow obstruction [J]. Am Rev Respir Dis, 1984, 129(1): 101-105.
16
Marini JJ, Gattinoni L. Time course of evolving ventilator-induced lung injury: the "shrinking baby lung" [J]. Crit Care Med, 2020, 48(8): 1203-1209.
17
Gattinoni L, Busana M, Camporota L, et al. COVID-19 and ARDS: the baby lung size matters [J]. Intensive Care Med, 2021, 47(1): 133-134.
18
Hart N, Laffont I, de la Sota AP, et al. Respiratory effects of combined truncal and abdominal support in patients with spinal cord injury [J]. Arch Phys Med Rehabil, 2005, 86(7): 1447-1451.
19
Ambrose AB, Detelich JF, Weinmann M, et al. Evaluation of a pneumatic vest to treat symptoms of ARDS caused by COVID-19 [J]. J Med Devices-Trans Asme, 2022, 16(1): 011004.
20
Marini JJ, Selickman J. Bedside detection of end-tidal hyperinflation in acute respiratory distress syndrome [J]. Ann Am Thorac Soc, 2022, 19(11): 1791-1795.
21
Selickman J, Marini JJ. Chest wall loading in the ICU: pushes, weights, and positions [J]. Ann Intensive Care, 2022, 12(1): 103.
22
Terragni PP, Rosboch G, Tealdi A, et al. Tidal hyperinflation during low tidal volume ventilation in acute respiratory distress syndrome [J]. Am J Respir Crit Care Med, 2007, 175(2): 160-166.
23
Rossi S, Palumbo MM, Sverzellati N, et al. Mechanisms of oxygenation responses to proning and recruitment in COVID-19 pneumonia [J]. Intensive Care Med, 2022, 48(1): 56-66.
24
Marini JJ, Rocco PRM, Gattinoni L. Static and dynamic contributors to ventilator-induced lung injury in clinical practice pressure, energy, and power [J]. Am J Respir Crit Care Med, 2020, 201(7): 767-774.
[1] 江雅婷, 刘林峰, 沈辰曦, 陈奔, 刘婷, 龚裕强. 组织相关巨噬素3 保护肺血管内皮糖萼治疗急性呼吸窘迫综合征的机制研究[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(05): 353-362.
[2] 李振翮, 魏长青, 甄国栋, 李振富. 脓毒症并发急性呼吸窘迫综合征患者血清S1P、Wnt5a变化及其临床意义[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 293-300.
[3] 李智, 冯芸. NF-κB 与MAPK 信号通路及其潜在治疗靶点在急性呼吸窘迫综合征中的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 840-843.
[4] 张璇, 高杨, 房雅君, 姚艳玲. 保护性机械通气在肺癌胸腔镜肺段切除术中的临床应用[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 563-567.
[5] 苗明月, 周建新. 肺保护性镇静:应重视呼吸驱动和吸气努力的床旁评估[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 325-328.
[6] 韦小霞, 陈管洁, 李雪珠, 李晓青, 钱淑媛. 机械通气患者抗菌药物雾化吸入的临床实施[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 334-337.
[7] 王晓霞, 乌丹, 张江英, 乌雅罕, 郝颖楠, 斯日古楞. 《2023 年美国胸科学会关于成人急性呼吸窘迫综合征患者管理的临床实践指南更新》解读[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 338-343.
[8] 刘婷, 杨少康, 陈亿霏, 刘悦, 潘纯. 气道闭合的监测在机械通气中的研究进展[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 394-398.
[9] 潘清, 葛慧青. 基于机械通气波形大数据的人机不同步自动监测方法[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 399-403.
[10] 杨东星, 沈鹏, 赵慧颖. 免疫球蛋白联合依库珠单抗治疗GBS 并发重度ARDS 患者一例[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 404-408.
[11] 杨永红, 杨莹, 齐红蕾, 刘福瑞, 朱金源. 单细胞测序在急性呼吸窘迫综合征中的应用进展[J/OL]. 中华重症医学电子杂志, 2024, 10(03): 248-252.
[12] 李松栗, 黄蔚, 巢杰, 杨毅, 邱海波. 单核/巨噬细胞来源的细胞外囊泡在急性呼吸窘迫综合征中的研究进展[J/OL]. 中华重症医学电子杂志, 2024, 10(03): 253-257.
[13] 刘春峰, 徐朝晖, 施红伟, 陈瑢, 马腾飞, 李鹏飞, 袁蓉, 陈建荣, 徐爱明. 机械通气患者肌肉减少症的诊断及其对预后的影响[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 820-825.
[14] 刘晓鹏, 柳聪艳, 杨宁, 蔡琛, 李晓兵, 王红宇, 张思森. 三穴五针联合腹部提压法在机械通气患者肺康复中的疗效[J/OL]. 中华卫生应急电子杂志, 2024, 10(04): 193-198.
[15] 刘晴雯, 韩勇, 陈丽丹, 邓哲. 早期机械通气对成人院内心脏骤停病死率的影响:一项回顾性队列研究[J/OL]. 中华卫生应急电子杂志, 2024, 10(04): 203-206.
阅读次数
全文


摘要