切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2024, Vol. 10 ›› Issue (02) : 118 -126. doi: 10.3877/cma.j.issn.2096-1537.2024.02.005

专家论坛

肺复张在急性呼吸窘迫综合征中的应用和临床进展
史楠1, 袁雪燕1, 邱海波1,()   
  1. 1. 210009 南京,江苏省重症医学重点实验室 东南大学附属中大医院重症医学科
  • 收稿日期:2023-06-02 出版日期:2024-05-28
  • 通信作者: 邱海波
  • 基金资助:
    国家自然科学基金专项(82341032); 国家自然科学基金重点项目(81930058); 科技部国家重点研发计划项目(2022YFC2504400)

Current application and advances in lung recruitment in ARDS

Nan Shi1, Xueyan Yuan1, Haibo Qiu1,()   

  1. 1. Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
  • Received:2023-06-02 Published:2024-05-28
  • Corresponding author: Haibo Qiu
引用本文:

史楠, 袁雪燕, 邱海波. 肺复张在急性呼吸窘迫综合征中的应用和临床进展[J]. 中华重症医学电子杂志, 2024, 10(02): 118-126.

Nan Shi, Xueyan Yuan, Haibo Qiu. Current application and advances in lung recruitment in ARDS[J]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2024, 10(02): 118-126.

机械通气是治疗急性呼吸窘迫综合征(ARDS)的重要手段,然而不恰当的机械通气策略会引起呼吸机相关肺损伤(VILI)。肺复张可减少萎陷伤和剪切伤,但也可能增加容积伤。然而,多年来,相关的随机对照研究并未证实肺复张能改善ARDS病死率。本文从肺复张的病理生理机制、方法和监测展开讨论,发现选择具有肺可复张性的人群是一个重要因素。ARDS患者中影响肺复张的主要因素包括病因、病变严重程度和类型。本文就肺复张在ARDS中的应用和临床进展进行综述,旨在为未来肺复张在ARDS中的研究提供方向。

Mechanical ventilation (MV) is one of the most important management in acute respiratory distress syndrome (ARDS) patients, but also leading to ventilator-induced lung injury (VILI) when inappropriate applied. Lung recruitment is able to decrease atelectrauma and shear strain, but with the risk of volutrauma. For decades, randomized clinical trials (RCTs) on lung recruitment have not concluded to improve mortality in ARDS. This paper reviews pathophysiological mechanism, methods and monitoring during lung recruitment, which discovering that it is important to find recruitable ARDS patients. The factors affecting results of lung recruitment include etiology, severity and classification of ARDS. This article reviews current application and advances in lung recruitment in ARDS in order to find further research topics.

图1 肺复张后通气变化4 注:蓝色代表过度膨胀肺泡;米色代表正常通气肺泡;红色代表塌陷/不张肺泡
表1 肺复张RCT研究的特征、结论及局限性
纳入研究作者,发表年份 纳入标准 ARDS病因 干预组方法 对照组方法 结论 局限性
例数 肺复张方法 Vt<8 ml/kg 联合高PEEP 例数 Vt<8 ml/kg PEEP策略
Amato等[33],1998 LIS >2.5分,PCWP < 16 mmHg,机械通气时间<1周 肺源性为主 29 CPAP 35~40 cmH2O,持续40 s 24 否,12 a RM改善28 d病死率 常规组未进行小潮气量肺保护性通气
易丽等[34],2005 符合ARDS诊断,PaO2/FiO2≤200 mmHg 未说明 14 CPAP 40 cmH2O,持续40 s 14 a RM可改善氧合 -
王晓芝等[35]2007 符合ARDS诊断,PaO2/FiO2<200 mmHg 肺外源性为主 14 CPAP 35 cmH2O,持续35 s 14 b RM改善氧合,不改善病死率 小样本量
Meade等[36],2008 符合ARDS诊断,发病48 h以内,PaO2/FiO2≤250 mmHg 肺源性为主 475 CPAP 40 cmH2O,持续40 s 508 b RM改善氧合,不改善病死率 不能区分高水平PEEP、高气道平压、RM和压力控制通气在肺保护中的作用
Huh等[37],2009 符合ARDS诊断,PaO2/FiO2≤200 mmHg 肺源性:肺外源性=2∶1 30 延长叹息法,Vt设置为基线的25%,PEEP最高达25 cmH2O 27 b RM改善氧合,不改善28 d病死率 1. 小样本量;
2. 氧合/力学指标评估肺复张不敏感,未评估塌陷肺泡复张的效果,复张压力可能不够
汪宗昱等[38]2009 符合ARDS诊断,PaO2/FiO2≤200 mmHg 肺源性:肺外源性=1∶1 10 CPAP 40 cmH2O,持续30 s 10 a RM不改善氧合和EVLW 未评估RM反应性
Xi等[39],2010 符合ARDS诊断,PaO2/FiO2≤200 mmHg 肺炎,其他病因和脓毒血症 55 CPAP 40 cmH2O,持续40 s 55 a RM改善氧合和ICU病死率,不改善住院/28 d病死率 1. RM后PEEP水平较低;
2. RM压力和时间应用是否合适
杨国辉等[40],2011 符合ARDS诊断,PaO2/FiO2≤200 mmHg 肺源性:肺外源性=1∶1 19 CPAP 40 cmH2O,持续30 s 19 b RM改善氧合 -
Hodgson等[41],2011 符合ARDS诊断,发病72 h以内,PaO2/FiO2≤200 mmHg 肺源性为主 10 驱动压设置在15 cmH2O,PEEP递增法至40 cmH2O 10 b RM改善氧合和炎症,不改善住院病死率 小样本量
Kacmarek等[42],2016 符合ARDS诊断,发病48 h以内,PaO2/FiO2≤200 mmHg 肺源性为主 99 驱动压设置在15 cmH2O,PEEP递增法至35~45 cmH2O 101 b RM改善氧合,不改善病死率 1. 小样本量;
2. 液体管理未记录
Chung等[43],2017 符合ARDS诊断,发病48 h以内,PaO2/FiO2<200 mmHg 未说明 12 驱动压设置在15 cmH2O,PEEP递增法至40 cmH2O 12 b RM改善氧合和EVLW,不改善病死率 1. 小样本量;
2. EVLW热稀释法存在局限性
Yu等[44],2017 符合ARDS诊断 肺源性为主 36 驱动压设置在15 cmH2O,PEEP递增法至40 cmH2O 38 b RM改善氧合,不改善病死率 1. 高度异质性;
2. 肺内外源性病因均有,不能确定亚型的作用
ART[30],2017 符合ARDS诊断,发病72 h以内,PaO2/FiO2<200 mmHg 肺源性为主 501 驱动压设置在15 cmH2O,PEEP递增法从25 cmH2O至35~45 cmH2O 509 b RM增加28 d病死率和气压伤、气胸发生率 1. 对照组高死亡率反映人群因素影响结果;2. 操作前未评估肺可复张性,未进行表型分类;3. 持续时间长,方案变更一次;4. 干预措施复杂,涉及NMBA和液体准备,不可能将观察到的临床效应完全归因于RM和PEEP的直接效应
Kung等[45],2019 符合ARDS诊断,发病72h以内,PaO2/FiO2<250 mmHg 肺源性为主 60 驱动压设置在15 cmH2O,PEEP递增法至气道峰压达到50 cmH2O 60 b RM改善脱离呼吸机和ICU时长,不改善28 d病死率 1. 小样本量;
2. RM组接受NMBA比例更高;
3. 未评估两组肺部形态学同质性
Hodgson等[46],2019 符合ARDS诊断,发病72 h以内,PaO2/FiO2<200 mmHg 肺源性为主 57 驱动压设置在15 cmH2O,PEEP递增法从20 cmH2O至40 cmH2O 56 b RM不改善病死率和脱离呼吸机天数,心律失常发生率增加 1. 小样本量;
2. 试验提前停止;
3. ART结果影响了随机化平衡
Constantin等[32],2019 符合ARDS诊断,发病12 h以内,PaO2/FiO2<200 mmHg 肺源性为主 89 CPAP 40 cmH2O,持续40 s 204 b RM未改善病死率,与肺部形态不一致的通气策略增加病死率 1. 21%肺部形态被错误分类;2. 肺部形态学不能替代定量分析以量化肺泡复张和过度充气;3. 仅通过随机化前的CT/X线进行分类,首次肺复张后再次判断的肺可复张性未纳入分类
图2 肺复张对ARDS患者第1天氧合指数的效应森林图,与对照组相比 注:ARDS为急性呼吸窘迫综合征
图3 肺复张对ARDS患者28 d病死率的效应森林图,与对照组相比 注:ARDS为急性呼吸窘迫综合征
1
Gorman EA, O'Kane CM, McAuley DF. Acute respiratory distress syndrome in adults: diagnosis, outcomes, long-term sequelae, and management [J]. Lancet, 2022, 400(10358): 1157-1170.
2
Dianti J, Tisminetzky M, Ferreyro BL, et al. Association of positive end-expiratory pressure and lung recruitment selection strategies with mortality in acute respiratory distress syndrome: a systematic review and network meta-analysis [J]. Am J Respir Crit Care Med, 2022, 205(11): 1300-1310.
3
Lachmann B. Open up the lung and keep the lung open [J]. Intensive Care Med, 1992, 18(6): 319-321.
4
Pensier J, De JA, Hajjej Z, et al. Effect of lung recruitment maneuver on oxygenation, physiological parameters and mortality in acute respiratory distress syndrome patients: a systematic review and meta-analysis [J]. Intensive Care Med, 2019, 45(12): 1691-1702.
5
Bos LDJ, Ware LB. Acute respiratory distress syndrome: causes, pathophysiology, and phenotypes [J]. Lancet, 2022, 400(10358): 1145-1156.
6
Gattinoni L, Pesenti A. The concept of "baby lung" [J]. Intensive Care Med, 2005, 31(6): 776-784.
7
Muders T, Wrigge H. New insights into experimental evidence on atelectasis and causes of lung injury [J]. Best Pract Res Clin Anaesthesiol, 2010, 24(2): 171-182.
8
Thompson BT, Chambers RC, Liu KD. Acute respiratory distress syndrome [J]. N Eng J Med, 2017, 377(6): 562-572.
9
Marini JJ, Gattinoni L. Management of COVID-19 respiratory distress [J]. JAMA, 2020, 323(22): 2329-2330.
10
Gattinoni L, Chiumello D, Caironi P, et al. COVID-19 pneumonia: different respiratory treatments for different phenotypes? [J]. Intensive Care Med, 2020, 46(6): 1099-1102.
11
Mead J, Takishima T, Leith D. Stress distribution in lungs: a model of pulmonary elasticity [J]. J Appl Physiol, 1970, 28(5): 596-608.
12
Pierrakos C, Smit MR, Hagens LA, et al. Assessment of the effect of recruitment maneuver on lung aeration through imaging analysis in invasively ventilated patients: a systematic review [J]. Front Physiol, 2021, 12: 666941.
13
Mayo PH, Copetti R, Feller-kopman D, et al. Thoracic ultrasonography: a narrative review [J]. Intensive Care Med, 2019, 45(9): 1200-1211.
14
Jimenez JV, Weirauch AJ, Culter CA, et al. Electrical impedance tomography in acute respiratory distress syndrome management [J]. Crit Care Med, 2022, 50(8): 1210-1223.
15
Meier T, Luepschen H, Karsten J, et al. Assessment of regional lung recruitment and derecruitment during a PEEP trial based on electrical impedance tomography [J]. Intensive Care Med, 2008, 34(3): 543-550.
16
Gattinoni L, Pietro C, Massimo C, et al. Lung recruitment in patients with the acute respiratory distress syndrome [J]. N Eng J Med, 2006, 354(17): 1775-1786.
17
Jonkman AH, Ranieri VM, Brochard L. Lung recruitment [J]. Intensive Care Med, 2022, 48(7): 936-938.
18
Chiumello D, Marino A, Brioni M, et al. Lung recruitment assessed by respiratory mechanics and computed tomography in patients with acute respiratory distress syndrome. What is the relationship? [J]. Am J Respir Crit Care Med, 2016, 193(11): 1254-1263.
19
Chen L, Del SL, Grieco DL, et al. Potential for lung recruitment estimated by the recruitment-to-inflation ratio in acute respiratory distress syndrome. a clinical trial [J]. Am J Respir Crit Care Med, 2020, 201(2): 178-187.
20
Jonkman AH, Alcala GC, Pavlovsky B, et al. Lung recruitment assessed by electrical impedance tomography (RECRUIT): a multicenter study of COVID-19 ARDS [J]. Am J Respir Crit Care Med, 2023, 208(1): 25-38.
21
Cour M, Biscarrat C, Stevic N, et al. Recruitment-to-inflation ratio measured with modern intensive care unit ventilators: How accurate is it? [J]. Crit Care, 2020, 26(1): 85.
22
Beloncle FM, Pavlovsky B, Desprez C, et al. Recruitability and effect of PEEP in SARS-Cov-2-associated acute respiratory distress syndrome [J]. Ann Intensive Care, 2020, 10(1): 55.
23
Pelosi P, Cadringher P, Bottino N, et al. Sigh in acute respiratory distress syndrome [J]. Am J Respir Crit Care Med, 1999, 159(3): 872-880.
24
Tugrul S, Akinci O, Ozcan PE, et al. Effects of sustained inflation and postinflation positive end-expiratory pressure in acute respiratory distress syndrome: focusing on pulmonary and extrapulmonary forms [J]. Crit Care Med, 2003, 31(3): 738-744.
25
Crotti S, Mascheroni D, Caironi P, et al. Recruitment and derecruitment during acute respiratory failure [J]. Am J Respir Crit Care Med, 2001, 164(1): 131-140.
26
Riva DR, Oliveira MB, Rzezinski AF, et al. Recruitment maneuver in pulmonary and extrapulmonary experimental acute lung injury [J]. Crit Care Med, 2008, 36(6): 1900-1908.
27
Maiolo G, Collino F, Vasques F, et al. Reclassifying acute respiratory distress syndrome [J].Am J Respir Crit Care Med, 2018, 197(12): 1586-1595.
28
Cressoni M, Chiumello D, Algieri I, et al. Opening pressures and atelectrauma in acute respiratory distress syndrome [J]. Intensive Care Med, 2017, 43(5): 603-611.
29
Combes A, Hajage D, Capellier G, et al. Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome [J]. N Eng J Med, 2018, 378(21): 1965-1975.
30
Writing Group for the Alveolar Recruitment for Acute Respiratory Distress Syndrome Trial (ART) Investigators, Cavalcanti AB, Suzumura ÉA, et al. Effect of lung recruitment and titrated positive end-expiratory pressure (PEEP) vs low PEEP on mortality in patients with acute respiratory distress syndrome: a randomized clinical trial [J]. JAMA, 2017, 318(14): 1335-1345.
31
Coppola S, Pozzi T, Gurgitano M, et al. Radiological pattern in ARDS patients: partitioned respiratory mechanics, gas exchange and lung recruitability [J]. Ann Intensive Care, 2021, 11(1): 78.
32
Constantin JM, Jabaudon M, Lefrant JY, et al. Personalised mechanical ventilation tailored to lung morphology versus low positive end-expiratory pressure for patients with acute respiratory distress syndrome in France (the LIVE study): a multicentre, single-blind, randomised controlled trial [J]. Lancet Respir Med, 2019, 7(10): 870-880.
33
Amato MB, Barbas CS, Medeiros DM, et al. Effect of a Protective-Ventilation Strategy on Mortality in the Acute Respiratory Distress Syndrome [J]. N Eng J Med, 1998, 338(6): 347-354.
34
易丽, 席修明. 小潮气量通气加肺复张法对急性呼吸窘迫综合征疗效的影响 [J]. 中国危重病急救医学, 2005, 17(8): 472-476.
35
王晓芝, 吕长俊, 高福全, 等. 肺复张手法联合双水平正压通气与小潮气量机械通气治疗急性呼吸窘迫综合征 [J]. 中华结核和呼吸杂志, 2007, 30(1): 44-47.
36
Meade MO, Cook DJ, Guyatt GH, et al; Lung Open Ventilation Study Investigators. Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome: a randomized controlled trial [J]. JAMA, 2008, 299(6): 637-645.
37
Huh J, Jung H, Choi H, et al. Efficacy of positive end-expiratory pressure titration after the alveolar recruitment manoeuvre in patients with acute respiratory distress syndrome [J]. Crit Care, 2009, 13(1): R22.
38
汪宗昱, 朱曦, 李宏亮, 等. 肺复张对急性呼吸窘迫综合征患者血管外肺水的影响 [J]. 中国危重病急救医学, 2009, 21(10): 604-608.
39
Xi XM, Jiang L, Zhu B. Clinical efficacy and safety of recruitment maneuver in patients with acute respiratory distress syndrome using low tidal volume ventilation: a multicenter randomized controlled clinical trial [J]. Chin Med J (Engl), 2010, 123(21): 3100-3105.
40
杨国辉, 王春艳, 宁睿. 高呼气末正压加肺复张治疗急性呼吸窘迫综合征 [J]. 中国危重病急救医学, 2011, 23(1): 28-31.
41
Hodgson CL, Tuxen DV, Davies AR, et al. A randomised controlled trial of an open lung strategy with staircase recruitment, titrated PEEP and targeted low airway pressures in patients with acute respiratory distress syndrome [J]. Crit Care, 2011, 15(3): R133.
42
Kacmarek RM, Villar J, Sulemanji D, et al. Open lung approach for the acute respiratory distress syndrome: a pilot, randomized controlled trial [J]. Crit Care Med, 2016, 44(1): 32-42.
43
Chung FT, Lee CS, Lin SM, et al. Alveolar recruitment maneuver attenuates extravascular lung water in acute respiratory distress syndrome [J]. Medicine (Baltimore), 2017, 96(30): e7627.
44
Yu S, Hu TX, Jin J, et al. Effect of protective lung ventilation strategy combined with lung recruitment maneuver in patients with acute respiratory distress syndrome (ARDS) [J]. J Acute Dis, 2017, 6(4): 163-168.
45
Kung SC, Hung YL, Chen WL, et al. Effects of stepwise lung recruitment maneuvers in patients with early acute respiratory distress syndrome: a prospective, randomized, controlled trial [J]. J Clin Med, 2019, 8(2): 231.
46
Hodgson CL, Cooper DJ, Arabi Y, et al. Maximal recruitment open lung ventilation in acute respiratory distress syndrome (PHARLAP). A Phase Ⅱ, multicenter randomized controlled clinical trial [J]. Am J Respir Crit Care Med, 2019, 200(11): 1363-1372.
47
Puybasset L, Cluzel P, Gusman P, et al. Regional distribution of gas and tissue in acute respiratory distress syndrome. Ⅰ. Consequences for lung morphology. CT Scan ARDS Study Group [J]. Intensive Care Med, 2000, 26(7): 857-869.
48
Wendel Garcia PD, Caccioppola A, Coppola S, et al. Latent class analysis to predict intensive care outcomes in Acute Respiratory Distress Syndrome: a proposal of two pulmonary phenotypes [J]. Crit Care, 2021, 25(1): 154.
49
Grasselli G, Calfee CS, Camporota L, et al. ESICM guidelines on acute respiratory distress syndrome: definition, phenotyping and respiratory support strategies [J]. Intensive Care Med, 2023, 49(7): 727-759.
50
Ball L, Serpa NA, Trifiletti V, et al. Effects of higher PEEP and recruitment manoeuvres on mortality in patients with ARDS: a systematic review, meta-analysis, meta-regression and trial sequential analysis of randomized controlled trials [J]. Intensive Care Med Exp, 2020, 8(Suppl 1): 39.
[1] 董道然, 宗媛, 王艳, 荆程桥, 任嘉伟. 右心保护性通气策略在急性呼吸窘迫综合征患者中的应用:一项前瞻性随机对照研究[J]. 中华危重症医学杂志(电子版), 2023, 16(06): 461-468.
[2] 庞丹, 孙刚, 伊乐, 丁立云, 钟美艳, 张杰, 于婷婷, 郭乐峰. 血清HIF-1α、VEGF、Flt-1的检测对ARDS的预后及临床意义[J]. 中华肺部疾病杂志(电子版), 2024, 17(01): 127-130.
[3] 刘珂, 张婧娴, 王如刚. 肺超声纹理特征ARDS与心源性肺水肿的鉴别诊断意义[J]. 中华肺部疾病杂志(电子版), 2023, 16(06): 892-894.
[4] 李伟, 卓剑, 黄川, 黄有攀. Lac、HO-1、sRAGE、CRP/ALB表达及脓毒症并发ARDS危险因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 514-516.
[5] 罗婷, 张实. 5种生物标志物对ARDS预后的预测分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 471-475.
[6] 饶林静, 罗皓梨, 钟山. 不同时长PPV在体外循环心脏大血管术后并发ARDS中的临床应用[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 575-577.
[7] 刘悦, 潘纯. 急性呼吸窘迫综合征患者肌松剂滴定的必要性与可行性[J]. 中华重症医学电子杂志, 2024, 10(02): 108-112.
[8] 王永广, 朱鹏, 许千金, 甘桂芬, 石钟山, 潘纯. 急性呼吸窘迫综合征诊断标准亟需更新[J]. 中华重症医学电子杂志, 2024, 10(02): 113-117.
[9] 陈含冰, 储翠林, 邱海波. 急性呼吸窘迫综合征中巨噬细胞死亡方式的研究进展[J]. 中华重症医学电子杂志, 2024, 10(01): 79-84.
[10] 卢梦诗, 刘威, 马加威, 嵇丹丹, 贾璇, 詹心萍, 罗亮. 人工智能在急性呼吸窘迫综合征领域的应用进展[J]. 中华重症医学电子杂志, 2024, 10(01): 66-71.
[11] 李浩南, 张煜彭, 付焱, 冯继伟, 刘凯, 张文凯. 缝隙连接蛋白43在肺部疾病中的研究进展[J]. 中华重症医学电子杂志, 2024, 10(01): 60-65.
[12] 王晶晶, 谢晖, 邓璞钰, 张晨晨, 田学, 谢云, 王瑞兰. 新型冠状病毒感染ARDS患者EIT监测下俯卧位通气成像的改变[J]. 中华重症医学电子杂志, 2024, 10(01): 31-37.
[13] 陈菁, 黄蔚, 邱海波. 细菌外膜囊泡在ARDS中的功能及机制研究进展[J]. 中华重症医学电子杂志, 2023, 09(04): 391-395.
[14] 王吉, 张颖, 顾雪, 杨朋磊, 陈齐红. 间充质干细胞微泡对ARDS肺纤维化影响的实验研究[J]. 中华临床医师杂志(电子版), 2024, 18(01): 72-78.
[15] 计超, 向群. 乙酰胆碱受体对急性呼吸窘迫综合征小鼠T细胞亚群和炎症因子的影响[J]. 中华诊断学电子杂志, 2024, 12(01): 50-56.
阅读次数
全文


摘要