切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2024, Vol. 10 ›› Issue (02) : 108 -112. doi: 10.3877/cma.j.issn.2096-1537.2024.02.003

专家论坛

急性呼吸窘迫综合征患者肌松剂滴定的必要性与可行性
刘悦1, 潘纯1,()   
  1. 1. 210009 南京,江苏省重症医学重点实验室 东南大学附属中大医院重症医学科
  • 收稿日期:2023-07-25 出版日期:2024-05-28
  • 通信作者: 潘纯
  • 基金资助:
    江苏省卫健委重点项目(ZD2021057)

Muscle relaxants titration in patients with acute respiratory distress syndrome: necessity and feasibility

Yue Liu1, Chun Pan1,()   

  1. 1. Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, Southeast University, Nanjing 210009, China
  • Received:2023-07-25 Published:2024-05-28
  • Corresponding author: Chun Pan
引用本文:

刘悦, 潘纯. 急性呼吸窘迫综合征患者肌松剂滴定的必要性与可行性[J]. 中华重症医学电子杂志, 2024, 10(02): 108-112.

Yue Liu, Chun Pan. Muscle relaxants titration in patients with acute respiratory distress syndrome: necessity and feasibility[J]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2024, 10(02): 108-112.

ARDS患者常面临呼吸驱动过强的窘境,肌松治疗是规避过强呼吸驱动可能导致的膈肌功能障碍的有效手段。然而由于ARDS治疗中肌松剂的滥用,最新欧洲重症医学学会(ESICM)指南指出,ARDS治疗中不推荐常规使用肌松剂用于降低病死率。因此在ARDS临床治疗中应当针对有肌松指征的患者进行肌松剂量的滴定,谨慎选择合适的肌松深度,才能使肌松治疗有助于患者预后的改善。目前可通过无创及有创等多种手段进行肌松深度的监测,从而避免盲目肌松带来的危害,实现膈肌保护性通气。

Patients diagnosed with acute respiratory distress syndrome (ARDS) often face the dilemma of excessive respiratory drive. Muscle relaxation therapy is an effective means to avoid diaphragm dysfunction that may be caused by excessive respiratory drive. However, due to the abuse of muscle relaxants in the treatment of ARDS, the latest ESICM guidelines point out that the routine use of muscle relaxants in the treatment of ARDS is not recommended to reduce mortality. Therefore, in the clinical treatment of ARDS, the dose of muscle relaxation should be titrated for patients with indications of muscle relaxation, and the appropriate depth of muscle relaxation should be carefully selected so that muscle relaxation treatment can help improve the prognosis of patients. Currently, the depth of muscle relaxation can be monitored through non-invasive and invasive means, so as to avoid the harm caused by blind muscle relaxation and realize protective ventilation of the diaphragm.

图1 自我诱导性肺损伤的发生机制
1
Palakshappa JA, Krall JTW, Belfield LT, et al. Long-term outcomes in acute respiratory distress syndrome: epidemiology, mechanisms, and patient evaluation [J]. Crit Care Clin, 2021, 37(4): 895-911.
2
Bellani G, Laffey JG, Pham T, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries [J]. JAMA, 2016, 315(8): 788-800.
3
Mauri T, Alban L, Turrini C, et al. Optimum support by high-flow nasal cannula in acute hypoxemic respiratory failure: effects of increasing flow rates [J]. Intensive Care Med, 2017, 43(10): 1453-1463.
4
Moss M, Huang DT, Brower RG, et al. Early neuromuscular blockade in the acute respiratory distress syndrome [J]. N Engl J Med, 2019, 380(21): 1997-2008.
5
Papazian L, Forel JM, Gacouin A, et al. Neuromuscular blockers in early acute respiratory distress syndrome [J]. N Engl J Med, 2010, 363(12): 1107-1116.
6
Mart MF, Pun BT, Pandharipande P, et al. ICU survivorship-the relationship of delirium, sedation, dementia, and acquired weakness [J]. Crit Care Med, 2021, 49(8): 1227-1240.
7
Grasselli G, Calfee CS, Camporota L, et al. ESICM guidelines on acute respiratory distress syndrome: definition, phenotyping and respiratory support strategies [J]. Intensive Care Med, 2023.
8
Kassis EB, Beitler JR, Talmor D. Lung-protective sedation: moving toward a new paradigm of precision sedation [J]. Intensive Care Med, 2023, 49(1): 91-94.
9
Yoshida T, Nakahashi S, Nakamura MAM, et al. Volume-controlled ventilation does not prevent injurious inflation during spontaneous effort [J]. Am J Respir Crit Care Med, 2017, 196(5): 590-601.
10
Telias I, Brochard L, Goligher EC. Is my patient's respiratory drive (too) high?[J]. Intensive Care Med, 2018, 44(11): 1936-1939.
11
Brochard L, Slutsky A, Pesenti A. Mechanical ventilation to minimize progression of lung injury in acute respiratory failure [J]. Am J Respir Crit Care Med, 2017, 195(4): 438-442.
12
Hooijman PE, Beishuizen A, Witt CC, et al. Diaphragm muscle fiber weakness and ubiquitin-proteasome activation in critically ill patients [J]. Am J Respir Crit Care Med, 2015, 191(10): 1126-1138.
13
Goligher EC, Dres M, Fan E, et al. Mechanical ventilation-induced diaphragm atrophy strongly impacts clinical outcomes [J]. Am J Respir Crit Care Med, 2018, 197(2): 204-213.
14
Ma P, Liu J, Xi X, et al. Practice of sedation and the perception of discomfort during mechanical ventilation in Chinese intensive care units [J]. J Crit Care, 2010, 25(3): 451-457.
15
Epstein SK. How often does patient-ventilator asynchrony occur and what are the consequences?[J]. Respir Care, 2011, 56(1): 25-38.
16
Shanely RA, Zergeroglu MA, Lennon SL, et al. Mechanical ventilation-induced diaphragmatic atrophy is associated with oxidative injury and increased proteolytic activity [J]. Am J Respir Crit Care Med, 2002, 166(10): 1369-1374.
17
Güldner A, Braune A, Carvalho N, et al. Higher levels of spontaneous breathing induce lung recruitment and reduce global stress/strain in experimental lung injury [J]. Anesthesiology, 2014, 120(3): 673-682.
18
Doorduin J, Nollet JL, Roesthuis LH, et al. Partial neuromuscular blockade during partial ventilatory support in sedated patients with high tidal volumes [J]. Am J Respir Crit Care Med, 2017, 195(8): 1033-1042.
19
Bouju P, Tadié JM, Barbarot N, et al. Clinical assessment and train-of-four measurements in critically ill patients treated with recommended doses of cisatracurium or atracurium for neuromuscular blockade: a prospective descriptive study [J]. Ann Intensive Care, 2017, 7(1): 10.
20
Schepens T, Dres M, Heunks L, et al. Diaphragm-protective mechanical ventilation [J]. Curr Opin Crit Care, 2019, 25(1): 77-85.
21
Vaporidi K, Soundoulounaki S, Papadakis E, et al. Esophageal and transdiaphragmatic pressure swings as indices of inspiratory effort [J]. Respir Physiol Neurobiol, 2021, 284: 103561.
22
Liu L, Liu H, Yang Y, et al. Neuroventilatory efficiency and extubation readiness in critically ill patients [J]. Crit Care, 2012, 16(4): R143.
23
Mauri T, Yoshida T, Bellani G, et al. Esophageal and transpulmonary pressure in the clinical setting: meaning, usefulness and perspectives [J]. Intensive Care Med, 2016, 42(9): 1360-1373.
24
Hraiech S, Forel JM, Guervilly C, et al. How to reduce cisatracurium consumption in ARDS patients: the TOF-ARDS study [J]. Ann Intensive Care, 2017, 7(1): 79.
25
Thompson Bastin ML, Smith RR, Bissell BD, et al. Comparison of fixed dose versus train-of-four titration of cisatracurium in acute respiratory distress syndrome [J]. J Crit Care, 2021, 65: 86-90.
26
Mefford B, Donaldson JC, Bissell BD. To block or not: updates in neuromuscular blockade in acute respiratory distress syndrome [J]. Ann Pharmacother, 2020, 54(9): 899-906.
27
Goligher EC, Fan E, Herridge MS, et al. Evolution of diaphragm thickness during mechanical ventilation. impact of inspiratory effort [J]. Am J Respir Crit Care Med, 2015, 192(9): 1080-1088.
28
Tuinman PR, Jonkman AH, Dres M, et al. Respiratory muscle ultrasonography: methodology, basic and advanced principles and clinical applications in ICU and ED patients-a narrative review [J]. Intensive Care Med, 2020, 46(4): 594-605.
29
Lang J, Liu Y, Zhang Y, et al. Peri-operative diaphragm ultrasound as a new method of recognizing post-operative residual curarization [J]. BMC Anesthesiol, 2021, 21(1): 287.
30
Haaksma ME, Smit JM, Boussuges A, et al. EXpert consensus on diaphragm ultrasonography in the critically ill (EXODUS): a Delphi consensus statement on the measurement of diaphragm ultrasound-derived parameters in a critical care setting [J]. Crit Care, 2022, 26(1): 99.
31
Dianti J, Bertoni M, Goligher EC. Monitoring patient-ventilator interaction by an end-expiratory occlusion maneuver [J]. Intensive Care Med, 2020, 46(12): 2338-2341.
32
Albani F, Fusina F, Ciabatti G, et al. Flow index accurately identifies breaths with low or high inspiratory effort during pressure support ventilation [J]. Crit Care, 2021, 25(1): 427.
33
Albani F, Pisani L, Ciabatti G, et al. Flow index: a novel, non-invasive, continuous, quantitative method to evaluate patient inspiratory effort during pressure support ventilation [J]. Crit Care, 2021, 25(1): 196.
[1] 董道然, 宗媛, 王艳, 荆程桥, 任嘉伟. 右心保护性通气策略在急性呼吸窘迫综合征患者中的应用:一项前瞻性随机对照研究[J]. 中华危重症医学杂志(电子版), 2023, 16(06): 461-468.
[2] 王浩元, 王舒, 王娟, 杨建军. 基于类器官模型探索肠道与肠道菌群间相互关系的研究进展[J]. 中华普通外科学文献(电子版), 2024, 18(03): 220-224.
[3] 蒋正东, 李徐奇, 王曙逢, 魏光兵. 复发性腹股沟疝的腹腔镜手术策略及疗效观察[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(05): 539-543.
[4] 庞丹, 孙刚, 伊乐, 丁立云, 钟美艳, 张杰, 于婷婷, 郭乐峰. 血清HIF-1α、VEGF、Flt-1的检测对ARDS的预后及临床意义[J]. 中华肺部疾病杂志(电子版), 2024, 17(01): 127-130.
[5] 刘珂, 张婧娴, 王如刚. 肺超声纹理特征ARDS与心源性肺水肿的鉴别诊断意义[J]. 中华肺部疾病杂志(电子版), 2023, 16(06): 892-894.
[6] 董晗, 孙正波. PCV-VG通气模式对肺叶切除术安全性及术中吸气峰压的影响[J]. 中华肺部疾病杂志(电子版), 2023, 16(05): 676-678.
[7] 饶林静, 罗皓梨, 钟山. 不同时长PPV在体外循环心脏大血管术后并发ARDS中的临床应用[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 575-577.
[8] 王晶晶, 谢晖, 邓璞钰, 张晨晨, 田学, 谢云, 王瑞兰. 新型冠状病毒感染ARDS患者EIT监测下俯卧位通气成像的改变[J]. 中华重症医学电子杂志, 2024, 10(01): 31-37.
[9] 李浩南, 张煜彭, 付焱, 冯继伟, 刘凯, 张文凯. 缝隙连接蛋白43在肺部疾病中的研究进展[J]. 中华重症医学电子杂志, 2024, 10(01): 60-65.
[10] 卢梦诗, 刘威, 马加威, 嵇丹丹, 贾璇, 詹心萍, 罗亮. 人工智能在急性呼吸窘迫综合征领域的应用进展[J]. 中华重症医学电子杂志, 2024, 10(01): 66-71.
[11] 陈含冰, 储翠林, 邱海波. 急性呼吸窘迫综合征中巨噬细胞死亡方式的研究进展[J]. 中华重症医学电子杂志, 2024, 10(01): 79-84.
[12] 陈菁, 黄蔚, 邱海波. 细菌外膜囊泡在ARDS中的功能及机制研究进展[J]. 中华重症医学电子杂志, 2023, 09(04): 391-395.
[13] 顾国英, 黄迎春, 刘佳, 居建明, 于国锋, 蒋荣. 个体化肠外营养在肠切除伴肠功能障碍患者中的应用研究[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 489-493.
[14] 王吉, 张颖, 顾雪, 杨朋磊, 陈齐红. 间充质干细胞微泡对ARDS肺纤维化影响的实验研究[J]. 中华临床医师杂志(电子版), 2024, 18(01): 72-78.
[15] 计超, 向群. 乙酰胆碱受体对急性呼吸窘迫综合征小鼠T细胞亚群和炎症因子的影响[J]. 中华诊断学电子杂志, 2024, 12(01): 50-56.
阅读次数
全文


摘要