切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2025, Vol. 11 ›› Issue (02) : 204 -209. doi: 10.3877/cma.j.issn.2096-1537.2025.02.019

综述

mtDNA 在急性呼吸窘迫综合征肺损伤中的作用研究进展
黄丽丽1, 杨毅1, 邱海波1,()   
  1. 1. 210009 南京,江苏省重症医学重点实验室 东南大学附属中大医院重症医学科
  • 收稿日期:2023-11-13 出版日期:2025-05-28
  • 通信作者: 邱海波
  • 基金资助:
    国家自然科学基金专项项目(82341032)国家自然科学基金重点项目(81930058)国家重点研发计划项目(2022YFC2504400)南京市卫健委卫生科技发展专项资金项目(YKK21265)

Research progress in mtDNA in lung injury of ARDS patients

Lili Huang1, Yi Yang1, Haibo Qiu1,()   

  1. 1. Department of Critical Care Medicine,Jiangsu Provincial Key Laboratory of Critical Care Medicine,Zhongda Hospital,School of Medicine,Southeast University,Nanjing 210009,China
  • Received:2023-11-13 Published:2025-05-28
  • Corresponding author: Haibo Qiu
引用本文:

黄丽丽, 杨毅, 邱海波. mtDNA 在急性呼吸窘迫综合征肺损伤中的作用研究进展[J/OL]. 中华重症医学电子杂志, 2025, 11(02): 204-209.

Lili Huang, Yi Yang, Haibo Qiu. Research progress in mtDNA in lung injury of ARDS patients[J/OL]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2025, 11(02): 204-209.

急性呼吸窘迫综合征(ARDS)是常见的呼吸危重症,也是危重症患者死亡的主要原因之一,多年来一直是呼吸及危重病医学界研究的热点和难点。越来越多的研究发现,循环中的线粒体DNA(mtDNA)水平与ARDS 的发生发展有关,血浆mtDNA 水平有望成为临床诊断和评估ARDS 肺损伤严重程度的生物标志物。本文从mtDNA 的释放和产生以及导致ARDS 损伤的机制方面进行阐述,并基于mtDNA 的靶向治疗进行ARDS 新疗法的展望。

Acute respiratory distress syndrome (ARDS) is a common respiratory critical syndrome and one of the main causes of death in critically ill patients.It has been a hot and difficult point in respiratory and critical care medicine for many years.More and more studies have found that mitochondrial DNA (mtDNA)levels are associated with the development of ARDS.Plasma mtDNA levels are expected to be biomarkers for clinical diagnosis and evaluation of ARDS lung injury severity.In this review,we elaborate on the release and production of mtDNA and the underlying mechanisms leading to ARDS injury,prospecting for new therapies for ARDS targeting mtDNA.

1
Anderson S,Bankier AT,Barrell BG,et al.Sequence and organization of the human mitochondrial genome [J].Nature,1981,290(5806):457-465.
2
De Gaetano A,Solodka K,Zanini G,et al.Molecular mechanisms of mtDNA-mediated inflammation [J].Cells,2021,10(11):2898.
3
Ma M,Jiang W,Zhou R.DAMPs and DAMP-sensing receptors in inflammation and diseases [J].Immunity,2024,57(4):752-771.
4
Victorelli S,Salmonowicz H,Chapman J,et al.Apoptotic stress causes mtDNA release during senescence and drives the SASP [J].Nature,2023,622(7983):627-636.
5
Yang H,Sun R,Ma N,et al.Inhibition of nuclear factor-κB signal by pyrrolidine dithiocarbamate alleviates lipopolysaccharide-induced acute lung injury [J].Oncotarget,2017,8(29):47296-47304.
6
Dutra Silva J,Su Y,Calfee CS,et al.Mesenchymal stromal cell extracellular vesicles rescue mitochondrial dysfunction and improve barrier integrity in clinically relevant models of ARDS [J].Eur Respir J,2021,58(1):2002978.
7
Hernández-Beeftink T,Guillen-Guio B,Rodríguez-Pérez H,et al.Whole-blood mitochondrial DNA copies are associated with the prognosis of acute respiratory distress syndrome after sepsis [J].Front Immunol,2021,12:737369.
8
Scozzi D,Cano M,Ma L,et al.Circulating mitochondrial DNA is an early indicator of severe illness and mortality from COVID-19 [J].JCI Insight,2021,6(4).
9
Bagheri S,Hajiabadi F,Vahabzadeh R,et al.Investigating the impact of mitochondrial DNA:insights into blood transfusion reactions and mitigation strategies [J].Vox Sang,2025.
10
Simmons JD,Lee YL,Pastukh VM,et al.Potential contribution of mitochondrial DNA damage associated molecular patterns in transfusion products to the development of acute respiratory distress syndrome after multiple transfusions [J].J Trauma Acute Care Surg,2017,82(6):1023-1029.
11
Peng F,Wang S,Feng Z,et al.Circulating cell-free mtDNA as a new biomarker for cancer detection and management [J].Cancer Biol Med,2023,21(2):105-110.
12
Huang L,Chang W,Huang Y,et al.Prognostic value of plasma mitochondrial DNA in acute respiratory distress syndrome (ARDS):a single-center observational study [J].J Thorac Dis,2020,12(4):1320-1328.
13
Gorman EA,O'Kane CM,McAuley DF.Acute respiratory distress syndrome in adults:diagnosis,outcomes,long-term sequelae,and management [J].Lancet,2022,400(10358):1157-1170.
14
Kim J,Gupta R,Blanco LP,et al.VDAC oligomers form mitochondrial pores to release mtDNA fragments and promote lupuslike disease [J].Science,2019,366(6472):1531-1536.
15
Buck MD,Sowell RT,Kaech SM,et al.Metabolic Instruction of Immunity [J].Cell,2017,169(4):570-586.
16
Dela Cruz CS,Kang MJ.Mitochondrial dysfunction and damage associated molecular patterns (DAMPs) in chronic inflammatory diseases [J].Mitochondrion,2018,41:37-44.
17
Liu H,Fan H,He P,et al.Prohibitin 1 regulates mtDNA release and downstream inflammatory responses [J].EMBO J,2022,41(24):e111173.
18
Lázaro-Ibáñez E,Lässer C,Shelke GV,et al.DNA analysis of lowand high-density fractions defines heterogeneous subpopulations of small extracellular vesicles based on their DNA cargo and topology [J].J Extracell Vesicles,2019,8(1):1656993.
19
Nerlich A,Mieth M,Letsiou E,et al.Pneumolysin induced mitochondrial dysfunction leads to release of mitochondrial DNA [J].Sci Rep,2018,8(1):182.
20
Moore JA,Mistry JJ,Hellmich C,et al.LC3-associated phagocytosis in bone marrow macrophages suppresses acute myeloid leukemia progression through STING activation [J].J Clin Invest,2022,132(5):e153157.
21
Marostica G,Gelibter S,Gironi M,et al.Extracellular vesicles in neuroinflammation [J].Front Cell Dev Biol,2020,8:623039.
22
Zhao C,Liang F,Ye M,et al.GSDMD promotes neutrophil extracellular traps via mtDNA-cGAS-STING pathway during lung ischemia/reperfusion [J].Cell Death Discov,2023,9(1):368.
23
McIlroy DJ,Jarnicki AG,Au GG,et al.Mitochondrial DNA neutrophil extracellular traps are formed after trauma and subsequent surgery [J].J Crit Care,2014,29(6):1133.e1-5.
24
Song C,Li H,Li Y,et al.NETs promote ALI/ARDS inflammation by regulating alveolar macrophage polarization [J].Exp Cell Res,2019,382(2):111486.
25
Lefrançais E,Mallavia B,Zhuo H,et al.Maladaptive role of neutrophil extracellular traps in pathogen-induced lung injury [J].JCI Insight,2018,3(3):e98178.
26
Teluguakula N.Neutrophils set extracellular traps to injure lungs in coronavirus disease 2019 [J].J Infect Dis,2021,223(9):1503-1505.
27
D'Arcy MS.Cell death:a review of the major forms of apoptosis,necrosis and autophagy [J].Cell Biol Int,2019,43(6):582-592.
28
Wang L,Xie L,Zhang Q,et al.Plasma nuclear and mitochondrial DNA levels in acute myocardial infarction patients [J].Coron Artery Dis,2015,26(4):296-300.
29
Bindi E,Li B,Zhou H,et al.Mitochondrial DNA:a biomarker of disease severity in necrotizing enterocolitis [J].Eur J Pediatr Surg,2020,30(1):85-89.
30
de Torre-Minguela C,Gómez AI,Couillin I,et al.Gasdermins mediate cellular release of mitochondrial DNA during pyroptosis and apoptosis[J].FASEB J,2021,35(8):e21757.
31
Xian H,Watari K,Sanchez-Lopez E,et al.Oxidized DNA fragments exit mitochondria via mPTP- and VDAC-dependent channels to activate NLRP3 inflammasome and interferon signaling [J].Immunity,2022,55(8):1370-1385.e8.
32
刘进平,夏勇,李进,等.血浆游离mtDNA 及脑组织TLR-9/MAPK 的表达在蛛网膜下腔出血中的意义 [J].四川大学学报 (医学版),2017,48(2):225-229.
33
Xie L,Liu S,Cheng J,et al.Exogenous administration of mitochondrial DNA promotes ischemia reperfusion injury via TLR9-p38 MAPK pathway [J].Regul Toxicol Pharmacol,2017,89:148-154.
34
Zhang L,Deng S,Zhao S,et al.Intra-peritoneal administration of mitochondrial DNA provokes acute lung injury and systemic inflammation via Toll-like receptor 9 [J].Int J Mol Sci,2016,17(9):1425.
35
Gu X,Wu G,Yao Y,et al.Intratracheal administration of mitochondrial DNA directly provokes lung inflammation through the TLR9-p38 MAPK pathway [J].Free Radic Biol Med,2015,83:149-158.
36
Jing R,Hu ZK,Lin F,et al.Mitophagy-mediated mtDNA release aggravates stretching-induced inflammation and lung epithelial cell injury via the TLR9/MyD88/NF-κB pathway [J].Front Cell Dev Biol,2020,8:819.
37
Shen H,Wu N,Wang Y,et al.MyD88 gene knockout attenuates paraquat-induced acute lung injury [J].Toxicol Lett,2017,269:41-46.
38
Qi Z,He Z,Chen J,et al.Protection of toll-like receptor 9 against lipopolysaccharide-induced inflammation and oxidative stress of pulmonary epithelial cells via MyD88-mediated pathways [J].Physiol Res,2022,71(2):259-273.
39
Yang C,Song Y,Wang H.Suppression of RAGE and TLR9 by Ketamine contributes to attenuation of lipopolysaccharide-induced acute lung injury [J].J Invest Surg,2017,30(3):177-186.
40
Kim J,Kim HS,Chung JH.Molecular mechanisms of mitochondrial DNA release and activation of the cGAS-STING pathway [J].Exp Mol Med,2023,55(3):510-519.
41
Dvorkin S,Cambier S,Volkman HE,et al.New frontiers in the cGASSTING intracellular DNA-sensing pathway [J].Immunity,2024,57(4):718-730.
42
Cai X,Chiu YH,Chen ZJ.The cGAS-cGAMP-STING pathway of cytosolic DNA sensing and signaling [J].Mol Cell,2014,54(2):289-296.
43
Burdette DL,Monroe KM,Sotelo-Troha K,et al.STING is a direct innate immune sensor of cyclic di-GMP [J].Nature,2011,478(7370):515-518.
44
Ma R,Ortiz Serrano TP,Davis J,et al.The cGAS-STING pathway:the role of self-DNA sensing in inflammatory lung disease [J].FASEB J,2020,34(10):13156-13170.
45
Nakahira K,Haspel JA,Rathinam VA,et al.Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome [J].Nat Immunol,2011,12(3):222-230.
46
Ning L,Wei W,Wenyang J,et al.Cytosolic DNA-STING-NLRP3 axis is involved in murine acute lung injury induced by lipopolysaccharide[J].Clin Transl Med,2020,10(7):e228.
47
Fernandes-Alnemri T,Yu JW,Datta P,et al.AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA [J].Nature,2009,458(7237):509-513.
48
Sun L,Ma W,Gao W,et al.Propofol directly induces caspase-1-dependent macrophage pyroptosis through the NLRP3-ASC inflammasome [J].Cell Death Dis,2019,10(8):542.
49
Li H,Li Y,Song C,et al.Neutrophil extracellular traps augmented alveolar macrophage pyroptosis via AIM2 inflammasome activation in LPS-Induced ALI/ARDS [J].J Inflamm Res,2021,14:4839-4858.
50
Jabir MS,Hopkins L,Ritchie ND,et al.Mitochondrial damage contributes to Pseudomonas aeruginosa activation of the inflammasome and is downregulated by autophagy [J].Autophagy,2015,11(1):166-182.
51
Chao LK,Lin CH,Chiu HW,et al.Peroxyauraptenol inhibits inflammation and NLRP3 inflammasome activation by inhibiting reactive oxygen species generation and preserving mitochondrial integrity [J].J Agric Food Chem,2015,63(4):1210-1219.
52
Shi J,Yu T,Song K,et al.Dexmedetomidine ameliorates endotoxininduced acute lung injury in vivo and in vitro by preserving mitochondrial dynamic equilibrium through the HIF-1a/HO-1 signaling pathway [J].Redox Biol,2021,41:101954.
53
Xiao Z,Jia B,Zhao X,et al.Attenuation of Lipopolysaccharideinduced acute lung injury by cyclosporine-A via suppression of mitochondrial DNA [J].Med Sci Monit,2018,24:7682-7688.
54
Xian H,Liu Y,Rundberg Nilsson A,et al.Metformin inhibition of mitochondrial ATP and DNA synthesis abrogates NLRP3 inflammasome activation and pulmonary inflammation [J].Immunity,2021,54(7):1463-1477.e11.
55
Hwang N,Ghanta S,Li Q,et al.Carbon monoxide-induced autophagy enhances human mesenchymal stromal cell function via paracrine actions in murine polymicrobial sepsis [J].Mol Ther,2024,32(7):2232-2247.
56
Zhang Z,Wang X,Ma C,et al.Genipin protects rats against lipopolysaccharide-induced acute lung injury by reinforcing autophagy[J].Int Immunopharmacol,2019,72:21-30.
57
Liu W,Li CC,Lu X,et al.Overexpression of transcription factor EB regulates mitochondrial autophagy to protect lipopolysaccharideinduced acute lung injury [J].Chin Med J (Engl),2019,132(11):1298-1304.
58
Li T,Liu Y,Xu W,et al.Polydatin mediates Parkin-dependent mitophagy and protects against mitochondria-dependent apoptosis in acute respiratory distress syndrome [J].Lab Invest,2019,99(6):819-829.
59
Chang AL,Ulrich A,Suliman HB,et al.Redox regulation of mitophagy in the lung during murine Staphylococcus aureus sepsis [J].Free Radic Biol Med,2015,78:179-189.
60
Tang X,Zhong L,Tian X,et al.RUNX1 promotes mitophagy and alleviates pulmonary inflammation during acute lung injury [J].Signal Transduct Target Ther,2023,8(1):288.
61
Li G,Yuzhen L,Yi C,et al.DNaseI protects against Paraquat-induced acute lung injury and pulmonary fibrosis mediated by mitochondrial DNA [J].Biomed Res Int,2015,2015:386952.
[1] 贾艳慧, 原毅轩, 官浩, 胡大海. 清除衰老细胞在减轻脓毒症小鼠急性肺损伤中的作用机制探讨[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(01): 55-60.
[2] 张晓波, 巴特, 黄瑞娟, 王宏宇. 间充质干细胞外泌体改善急性肺损伤机制的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(01): 81-85.
[3] 杨春, 游洋伟, 周宇, 林泽超, 刘亮, 袁堃. 白细胞介素-10 调节辅助性T 细胞17/调节性T 细胞对小鼠输血相关急性肺损伤的作用研究[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(03): 355-361.
[4] 张鹏, 史慢慢, 马辉, 吴佼佼, 赵暾, 张颖彬. 急性呼吸窘迫综合征患者机械通气动脉血二氧化碳分压变异率与预后风险相关性[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(02): 226-230.
[5] 王鹏森, 吴慧锋, 温建芳, 韦阳, 董龙浩, 刘博强, 李占, 石春锋, 雷晓栋, 吴雄雄. 脓毒症并发急性肺损伤血清miR-146a 的表达及与预后相关性分析[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(02): 241-245.
[6] 曹柳兆, 滕为云, 徐兴祥. 坏死性凋亡在肺损伤中的作用机制[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(01): 180-183.
[7] 宗晓龙, 林源希, 张天翼, 刘雅茹, 李端阳, 李真玉. 紫檀芪通过抑制炎症反应和NETs 形成对减轻脓毒症小鼠急性肺损伤的影响[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(01): 29-35.
[8] 王金龙, 邵敏. 呼吸支持技术:2024 年度进展与展望[J/OL]. 中华重症医学电子杂志, 2025, 11(02): 117-124.
[9] 徐优, 郭强. 脓毒症肺损伤治疗:突破与创新的必要性[J/OL]. 中华重症医学电子杂志, 2025, 11(02): 152-156.
[10] 张建成, 谢冰, 尚游. 细胞迁移:脓毒症肠-肺交互作用的关键机制[J/OL]. 中华重症医学电子杂志, 2025, 11(02): 163-166.
[11] 袁雪燕, 邱海波, 刘玲. 重症呼吸:2024年度进展与展望[J/OL]. 中华重症医学电子杂志, 2025, 11(01): 22-26.
[12] 王谷宜, 黎家琦, 钟燕军, 余波, 吴晨方, 董海云, 徐敏, 王花芹, 唐莉, 朱艳艳, 李金秀, 吕奔. 基于智慧ICU云平台的ARDS集束化管理对ARDS患者临床结局的影响[J/OL]. 中华重症医学电子杂志, 2025, 11(01): 72-77.
[13] 倪韫晖, 袁雪燕, 黄丽丽, 杨毅, 邱海波. 呼吸驱动在保护性通气策略中的研究进展[J/OL]. 中华重症医学电子杂志, 2025, 11(01): 91-94.
[14] 王翔, 冯辉斌. 肺部超声在急性呼吸窘迫综合征表型中的应用进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(12): 1155-1160.
[15] 刘兴庆, 孟祥洋, 李森, 王海燕, 谢友红, 杨策. 胆碱能α7 烟碱型乙酰胆碱受体通路对高原冲击性脑损伤后肺脏功能的影响研究进展[J/OL]. 中华诊断学电子杂志, 2025, 13(01): 65-70.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?