切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2025, Vol. 11 ›› Issue (01) : 91 -94. doi: 10.3877/cma.j.issn.2096-1537.2025.01.017

综述

呼吸驱动在保护性通气策略中的研究进展
倪韫晖1, 袁雪燕1, 黄丽丽1, 杨毅1, 邱海波1,()   
  1. 1. 210009 南京,江苏省重症医学重点实验室 东南大学附属中大医院重症医学科
  • 收稿日期:2023-11-29 出版日期:2025-02-28
  • 通信作者: 邱海波
  • 基金资助:
    国家重点研发计划项目(2022YFC2504400)国家自然科学基金专项(82341032)国家自然科学基金重点项目(81930058)南京市卫健委卫生科技发展专项资金项目(YKK21265)

Research progress in respiratory drive in protective ventilation strategy

Yunhui Ni1, Xueyan Yuan1, Lili Huang1, Yi Yang1, Haibo Qiu1,()   

  1. 1. Jiangsu Provincial Key Laboratory of Critical Care Medicine,Department of Critical Care Medicine,Zhongda Hospital,School of Medicine,Southeast University,Nanjing 210009,China
  • Received:2023-11-29 Published:2025-02-28
  • Corresponding author: Haibo Qiu
引用本文:

倪韫晖, 袁雪燕, 黄丽丽, 杨毅, 邱海波. 呼吸驱动在保护性通气策略中的研究进展[J/OL]. 中华重症医学电子杂志, 2025, 11(01): 91-94.

Yunhui Ni, Xueyan Yuan, Lili Huang, Yi Yang, Haibo Qiu. Research progress in respiratory drive in protective ventilation strategy[J/OL]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2025, 11(01): 91-94.

肺保护性通气策略可以减少接受机械通气的急性呼吸窘迫综合征(ARDS)患者呼吸机相关性肺损伤的风险。传统的肺保护性通气策略缺乏呼吸驱动评估手段,忽视了膈肌保护。部分呼吸驱动控制不当的患者即使采用肺保护性通气策略,仍存在肺损伤和膈肌损伤的风险。本文就呼吸驱动在保护性通气策略中的研究进展进行综述。

Protective ventilation strategy can reduce ventilator induced lung injury in mechanically ventilated patients with acute respiratory distress syndrome (ARDS). Traditional lung protective ventilation strategy lacks evaluation of respiratory drive and neglects diaphragm protection. Some patients with poorly controlled respiratory drive are at risk of lung injury and diaphragmatic injury,even with lung protective ventilation strategy. This article reviews the research progress in respiratory drive in protective ventilation strategy.

1
Meyer NJ,Gattinoni L,Calfee CS. Acute respiratory distress syndrome[J]. Lancet,2021,398(10300):622-637.
2
Brochard L,Slutsky A,Pesenti A. Mechanical ventilation to minimize progression of lung injury in acute respiratory failure [J]. Am J Respir Crit Care Med,2017,195(4):438-442.
3
Beitler JR,Sands SA,Loring SH,et al. Quantifying unintended exposure to high tidal volumes from breath stacking dyssynchrony in ARDS:the BREATHE criteria [J]. Intensive Care Med,2016,42(9):1427-1436.
4
Yoshida T,Amato MBP,Kavanagh BP,et al. Impact of spontaneous breathing during mechanical ventilation in acute respiratory distress syndrome [J]. Curr Opin Crit Care,2019,25(2):192-198.
5
Ebihara S,Hussain SNA,Danialou G,et al. Mechanical ventilation protects against diaphragm injury in sepsis - Interaction of oxidative and mechanical stresses [J]. Am J Respir Crit Care Med,2002,165(2):221-228.
6
Lin MC,Ebihara S,El Dwairi Q,et al. Diaphragm sarcolemmal injury is induced by sepsis and alleviated by nitric oxide synthase inhibition[J]. Am J Respir Crit Care Med,1998,158(5):1656-1663.
7
Goligher EC,Dres M,Fan E,et al. Mechanical ventilation-induced diaphragm atrophy strongly impacts clinical outcomes [J]. Am J Respir Crit Care Med,2018,197(2):204-213.
8
Goligher EC,Fan E,Herridge MS,et al. Evolution of diaphragm thickness during mechanical ventilation impact of inspiratory effort [J].Am J Respir Crit Care Med,2015,192(9):1080-1088.
9
Levine S,Nguyen T,Taylor N,et al. Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans [J]. N Engl J Med,2008,358(13):1327-1335.
10
Luo YM,Moxham J,Polkey MI. Diaphragm electromyography using an oesophageal catheter:current concepts [J]. Clin Sci,2008,115(7-8):233-244.
11
Piquilloud L,Beloncle F,Richard JCM,et al. Information conveyed by electrical diaphragmatic activity during unstressed,stressed and assisted spontaneous breathing:a physiological study [J]. Ann Intensive Care,2019,9(1):89.
12
Bellani G,Mauri T,Coppadoro A,et al. Estimation of patient’s inspiratory effort from the electrical activity of the diaphragm [J]. Crit Care Med,2013,41(6):1483-1491.
13
Dres M,Dube BP,Mayaux J,et al. Coexistence and impact of limb muscle and diaphragm weakness at time of liberation from mechanical ventilation in medical intensive care unit patients [J]. Am J Respir Crit Care Med,2017,195(1):57-66.
14
Mauri T,Yoshida T,Bellani G,et al. Esophageal and transpulmonary pressure in the clinical setting:meaning,usefulness and perspectives[J]. Intensive Care Med,2016,42(9):1360-1373.
15
Mojoli F,Chiumello D,Pozzi M,et al. Esophageal pressure measurements under different conditions of intrathoracic pressure.An in vitro study of second generation balloon catheters [J]. Minerva Anestesiol,2015,81(8):855-864.
16
Morais CCA,Koyama Y,Yoshida T,et al. High positive end-expiratory pressure renders spontaneous effort noninjurious [J]. Am J Respir Crit Care Med,2018,197(10):1285-1296.
17
Carteaux G,Mancebo J,Mercat A,et al. Bedside adjustment of proportional assist ventilation to target a predefined range of respiratory effort [J]. Crit Care Med,2013,41(9):2125-2132.
18
Whitelaw W,Derenne J,Milicemili J. Occlusion pressure as a measure of respiratory center output in conscious man [J]. Respir Physiol,1975,23(2):181-199.
19
Alberti A,Gallo F,Fongaro A,et al. P0.1 is a useful parameter in setting the level of pressure support ventilation [J]. Intensive Care Med,1995,21(7):547-553.
20
Rittayamai N,Beloncle F,Goligher EC,et al. Effect of inspiratory synchronization during pressure-controlled ventilation on lung distension and inspiratory effort [J]. Ann Intensive Care,2017,7:100.
21
de Vries HJ,Tuinman PR,Jonkman AH,et al. Performance of noninvasive airway occlusion maneuvers to assess lung stress and diaphragm effort in mechanically ventilated critically ill patients [J].Anesthesiology,2023,138(3):274-288.
22
Holle R,Schoene R,Pavlin E. Effect of respiratory muscle weakness on P0.1 induced by partial curarization [J]. J Appl Physiol,1984,57(4):1150-1157.
23
Arnal JM,Wysocki M,Nafati C,et al. Automatic selection of breathing pattern using adaptive support ventilation [J]. Intensive Care Med,2008,34(1):75-81.
24
Kallet RH,Hemphill JC,Dicker RA,et al. The spontaneous breathing pattern and work of breathing of patients with acute respiratory distress syndrome and acute lung injury [J]. Respir Care,2007,52(8):989-995.
25
Georgopoulos D,Mitrouska I,Bshouty Z,et al. Respiratory response to CO2 during pressure-support ventilation in conscious normal humans [J]. Am J Respir Crit Care Med,1997,156(1):146-154.
26
Costa R,Navalesi P,Cammarota G,et al. Remifentanil effects on respiratory drive and timing during pressure support ventilation and neurally adjusted ventilatory assist [J]. Respir Physiol Neurobiol,2017,244:10-16.
27
Roca O,Caralt B,Messika J,et al. An index combining respiratory rate and oxygenation to predict outcome of nasal high-flow therapy [J].Am J Respir Crit Care Med,2019,199(11):1368-1376.
28
Chen D,Heunks L,Pan C,et al. A novel index to predict the failure of high-flow nasal cannula in patients with acute hypoxemic respiratory failure:a pilot study [J]. Am J Respir Crit Care Med,2022,206(7):910-913.
29
Parshall MB,Schwartzstein RM,Adams L,et al. An Official American Thoracic Society statement:update on the mechanisms,assessment,and management of dyspnea [J]. Am J Respir Crit Care Med,2012,185(4):435-452.
30
Santana PV,Cardenas LZ,de Albuquerque ALP. Diaphragm ultrasound in critically ill patients on mechanical ventilation-evolving concepts [J].Diagnostics,2023,13(6):1116.
31
Dianti J,Fard S,Wong J,et al. Strategies for lung- and diaphragmprotective ventilation in acute hypoxemic respiratory failure:a physiological trial [J]. Crit Care,2022,26(1):259.
32
De Vries HJ,Jonkman AH,De Grooth HJ,et al. Lung- and diaphragmprotective ventilation by titrating inspiratory support to diaphragm effort:a randomized clinical trial [J]. Crit Care Med,2022,50(2):192-203.
33
Vaporidi K,Akoumianaki E,Telias L,et al. Respiratory drive in critically ill patients pathophysiology and clinical implications [J]. Am J Respir Crit Care Med,2020,201(1):20-32.
34
Liu L,Liu H,Yang Y,et al. Neuroventilatory efficiency and extubation readiness in critically ill patients [J]. Crit Care,2012,16(4):R143.
[1] 江雅婷, 刘林峰, 沈辰曦, 陈奔, 刘婷, 龚裕强. 组织相关巨噬素3 保护肺血管内皮糖萼治疗急性呼吸窘迫综合征的机制研究[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(05): 353-362.
[2] 李振翮, 魏长青, 甄国栋, 李振富. 脓毒症并发急性呼吸窘迫综合征患者血清S1P、Wnt5a变化及其临床意义[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 293-300.
[3] 袁丽, 钱际银, 张云, 张晶, 高霏. 急性呼吸窘迫综合征患者体外膜氧合救治的临床分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(06): 1013-1016.
[4] 陈丽, 郭俊氚, 马红梅, 刘遵季. 死腔分数对急性呼吸窘迫综合征预后预测意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(06): 942-947.
[5] 曾忠平, 张任玲, 刘静, 张天莎, 艾美梅, 张朋勃. 恶性肿瘤伴急性呼吸衰竭行有创机械通气危险因素分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(06): 991-994.
[6] 李智, 冯芸. NF-κB 与MAPK 信号通路及其潜在治疗靶点在急性呼吸窘迫综合征中的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 840-843.
[7] 张璇, 高杨, 房雅君, 姚艳玲. 保护性机械通气在肺癌胸腔镜肺段切除术中的临床应用[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 563-567.
[8] 袁雪燕, 邱海波, 刘玲. 重症呼吸:2024年度进展与展望[J/OL]. 中华重症医学电子杂志, 2025, 11(01): 22-26.
[9] 王谷宜, 黎家琦, 钟燕军, 余波, 吴晨方, 董海云, 徐敏, 王花芹, 唐莉, 朱艳艳, 李金秀, 吕奔. 基于智慧ICU云平台的ARDS集束化管理对ARDS患者临床结局的影响[J/OL]. 中华重症医学电子杂志, 2025, 11(01): 72-77.
[10] 潘清, 葛慧青. 基于机械通气波形大数据的人机不同步自动监测方法[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 399-403.
[11] 杨东星, 沈鹏, 赵慧颖. 免疫球蛋白联合依库珠单抗治疗GBS 并发重度ARDS 患者一例[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 404-408.
[12] 苗明月, 周建新. 肺保护性镇静:应重视呼吸驱动和吸气努力的床旁评估[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 325-328.
[13] 王翔, 冯辉斌. 肺部超声在急性呼吸窘迫综合征表型中的应用进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(12): 1155-1160.
[14] 唐瑶瑶, 郭莹, 秦红霄, 于晶晶, 张义璇, 方明星, 孟稳利. HVHF联合CHVHF对脓毒症相关ARDS患者炎症反应和呼吸功能的影响[J/OL]. 中华临床医师杂志(电子版), 2024, 18(12): 1097-1103.
[15] 刘春峰, 徐朝晖, 施红伟, 陈瑢, 马腾飞, 李鹏飞, 袁蓉, 陈建荣, 徐爱明. 机械通气患者肌肉减少症的诊断及其对预后的影响[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 820-825.
阅读次数
全文


摘要