[1] |
Fothergill J. Observations on a case published in the in the last volume of the medical essays of recovering a mad dead in appearance, by distending the lungs with air[J]. Philos Trans, 1744, 43:275–281.
|
[2] |
Webb HH, Tierney DF. Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressures. Protection by positive end-expiratory pressure[J]. Am Rev Respir Dis, 1974, 110(5):556–565.
|
[3] |
Dreyfuss D, Soler P, Basset G, et al. High inflation pressure pulmonary edema. Respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure[J]. Am Rev Respir Dis, 1988, 137(5):1159–1164.
|
[4] |
Tremblay L, Valenza F, Ribeiro SP, et al. Injurious ventilatory strategies increase cytokines and c-fos m-RNA expression in an isolated rat lung model[J]. J Clin Invest, 1997, 99(5):944–952.
|
[5] |
Tremblay L, Slutsky AS. Ventilator-induced injury: from barotrauma to biotrauma[J]. Proc Assoc Am Physicians, 1998, 110(6):482–488.
|
[6] |
Ranieri VM, Suter PM, Tortorella C, et al. Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: a randomized controlled trial[J]. JAMA, 1999, 282(1):54–61.
|
[7] |
Amato MB, Barbas CS, Medeiros DM, et al. Effect of protective-ventilation strategy on mortality in the acute respiratory distress syndrome[J]. N Engl J Med, 1998, 338(6):347–354.
|
[8] |
Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network[J]. N Engl J Med, 2000, 342(18):1301–1308.
|
[9] |
Cabrera-Benítez NE, Parotto M, Post M, et al. Mechanical stress induces lung fibrosis by epithelial-mesenchymal transition[J]. Crit Care Med, 2012, 40(2):510–517.
|
[10] |
Zhang R, Pan Y, Fanelli V, et al. Mechanical Stress and the Induction of Lung Fibrosis via the Midkine Signaling Pathway[J]. Am J Respir Crit Care Med, 2015, 192(3):315–323.
|
[11] |
Fleischmann C, Scherag A, Adhikari NK, et al. International Forum of Acute Care Trialists. Assessment of global incidence and mortality of hospital-treated sepsis-current estimates and limitations[J]. Am J Respir Crit Care Med, 2015, Epub ahead of print.
|
[12] |
Ishiguro EE, Vanderwel D, Kusser W. Control of lipopolysaccharide biosynthesis and release by Escherichia coli and Salmonella typhimurium[J]. J Bacteriol, 1986, 168(1):328–333.
|
[13] |
Leeson MC, Fujihara Y, Morrison DC. Evidence for lipopolysaccharide as the predominant proinflammatory mediator in supernatants of antibiotic-treated bacteria[J]. Infect Immun, 1994, 62(11):4975–4980.
|
[14] |
Leeson MC, Morrison DC. Induction of proinflammatory responses in human monocytes by particular and soluble forms of lipopolysaccharide[J]. Shock, 1994, 2(4):235–245.
|
[15] |
Young LS, Stevens P, Ingram J. Functional role of antibody against "core" glycolipid of Enterobacteriaceae[J]. J Clin Invest, 1975, 56(4):850–861.
|
[16] |
Ziegler EJ, Douglas H, Sherman JE, et al. Treatment of E. coli and klebsiella bacteremia in agranulocytic animals with antiserum to a UDP-gal epimerase-deficient mutant[J]. J Immunol, 1973, 111(2):433–438.
|
[17] |
Lynn WA. Anti-endotoxin therapeutic options for the treatment of sepsis[J]. J Antimicrob Chemother, 1998, 41 Suppl A:71–80.
|
[18] |
Watkins LR, Hutchinson MR, Rice KC, et al. The "toll" of opioid-induced glial activation: improving the clinical efficacy of opioids by targeting glia[J]. Trends Pharmacol Sci, 2009, 30(11):581–591.
|
[19] |
Tidswell M, LaRosa SP. Toll-like receptor-4 antagonist eritoran tetrasodium for severe sepsis[J]. Expert Rev Anti Infect Ther, 2011, 9(5):507–520.
|
[20] |
Opal SM, Laterre PF, Francois B, et al. Effect of eritoran, an antagonist of MD2-TLR4, on mortality in patients with severe sepsis: the ACCESS randomized trial[J]. JAMA, 2013, 309(11):1154–1162.
|
[21] |
Lee JH, Del Sorbo L, Uhlig S et al. Intercellular adhesion molecule-1 mediates cellular cross-talk between parenchymal and immune cells after lipopolysaccharide neutralization[J]. J Immunol, 2004, 172(1):608–616.
|
[22] |
Kayagaki N, Wong MT, Stowe IB, et al. Noncanonical inflammasome activation by intracellular LPS independent of TLR4[J]. Science, 2013, 341(6151):1246–1249.
|
[23] |
Hagar JA, Powell DA, Aachoui Y, et al. Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock[J]. Science, 2013, 341(6151):1250–1253.
|
[24] |
Shi J, Zhao Y, Wang Y, et al. Inflammatory caspases are immune receptors for intracellular LPS[J]. Nature, 2014, 514(7521):187–192.
|