切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2015, Vol. 01 ›› Issue (01) : 58 -60. doi: 10.3877/cma.j.jssn.2096-1537.2015.01.014

所属专题: 文献

重症医学研究

重症医学研究:从实验室到临床
张海波1,*,*, 邱海波2   
  1. 1. 加拿大安大略省圣米高医院,多伦多大学
    2. 东南大学附属中大医院重症医学科
  • 收稿日期:2015-07-02 出版日期:2015-11-28
  • 通信作者: 张海波

Research in critical care medicine: from bench to bedside

Haibo Zhang1   

  1. 1. Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Department of Anesthesia, Interdepartmental Division of Critical Care Medicine, Department of Physiology, University of Toronto, Ontario, Canada
  • Received:2015-07-02 Published:2015-11-28
  • Corresponding author: Haibo Zhang
  • About author:
    Corresponding author: Zhang Haibo, Email: zhangh@smh.ca
引用本文:

张海波, 邱海波. 重症医学研究:从实验室到临床[J]. 中华重症医学电子杂志, 2015, 01(01): 58-60.

Haibo Zhang. Research in critical care medicine: from bench to bedside[J]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2015, 01(01): 58-60.

重症医学科患者病死率、致残率较高。为改善临床治疗效果,降低患者病死率、致残率,研究者对临床工作中遇到的问题展开大规模的实验研究。这种"床边-实验室-床边"模式被称为转化医学。这种医学转化研究在"患者-研究动物-患者"方法中让我们对许多疾病更加深入了解,包括呼吸机相关损伤、脓毒血症发病机制及治疗、全身性感染相关免疫功能的改变。一些医学转化研究的结果能够满足重症医学的临床需要,但在应用于临床的过程中也遇到许多困难。鉴于临床状况的复杂性是临床及临床前期研究的内在缺陷,所以在将实验研究结果应用临床时需要考虑到这一点。虽然从实验室到临床的转化是一个漫长的过程,但这是重症医学发展的方向,这一策略能够优化医疗支出并且改进临床的治疗效果。

The high mortality rate and morbidity in critically ill patients have prompted an intense research activity where clinical observations and questions are addressed in experimental research and then help improve bedside practice. The research module of bedside-bench-bedside is the so-called translational approach. There are excellent examples of translational research including the human-to-animal-to-human approach to address ventilator-induced lung injury, the animal-to-human approach to examine the mechanisms and testing therapies of sepsis, and the human-to-animal approach for sepsis-induced immune alteration. The translational research could be fulfilled in the bedside management of critically ill patients but also the hurdles to translate such achievements into clinical practice. Due to the inherent limitations existing in clinical and preclinical studies, the complexity of clinical situations should be taken into account when the preclinical discoveries are being translated into the development of novel therapeutic strategies for critically ill patients. There is a long way to go but a bench-to-bedside transition is the right direction and will facilitate a long term robust strategy that is economically feasible and clinically effective to manage critically ill patients.

[1]
Fothergill J. Observations on a case published in the in the last volume of the medical essays of recovering a mad dead in appearance, by distending the lungs with air[J]. Philos Trans, 1744, 43:275–281.
[2]
Webb HH, Tierney DF. Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressures. Protection by positive end-expiratory pressure[J]. Am Rev Respir Dis, 1974, 110(5):556–565.
[3]
Dreyfuss D, Soler P, Basset G, et al. High inflation pressure pulmonary edema. Respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure[J]. Am Rev Respir Dis, 1988, 137(5):1159–1164.
[4]
Tremblay L, Valenza F, Ribeiro SP, et al. Injurious ventilatory strategies increase cytokines and c-fos m-RNA expression in an isolated rat lung model[J]. J Clin Invest, 1997, 99(5):944–952.
[5]
Tremblay L, Slutsky AS. Ventilator-induced injury: from barotrauma to biotrauma[J]. Proc Assoc Am Physicians, 1998, 110(6):482–488.
[6]
Ranieri VM, Suter PM, Tortorella C, et al. Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: a randomized controlled trial[J]. JAMA, 1999, 282(1):54–61.
[7]
Amato MB, Barbas CS, Medeiros DM, et al. Effect of protective-ventilation strategy on mortality in the acute respiratory distress syndrome[J]. N Engl J Med, 1998, 338(6):347–354.
[8]
Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network[J]. N Engl J Med, 2000, 342(18):1301–1308.
[9]
Cabrera-Benítez NE, Parotto M, Post M, et al. Mechanical stress induces lung fibrosis by epithelial-mesenchymal transition[J]. Crit Care Med, 2012, 40(2):510–517.
[10]
Zhang R, Pan Y, Fanelli V, et al. Mechanical Stress and the Induction of Lung Fibrosis via the Midkine Signaling Pathway[J]. Am J Respir Crit Care Med, 2015, 192(3):315–323.
[11]
Fleischmann C, Scherag A, Adhikari NK, et al. International Forum of Acute Care Trialists. Assessment of global incidence and mortality of hospital-treated sepsis-current estimates and limitations[J]. Am J Respir Crit Care Med, 2015, Epub ahead of print.
[12]
Ishiguro EE, Vanderwel D, Kusser W. Control of lipopolysaccharide biosynthesis and release by Escherichia coli and Salmonella typhimurium[J]. J Bacteriol, 1986, 168(1):328–333.
[13]
Leeson MC, Fujihara Y, Morrison DC. Evidence for lipopolysaccharide as the predominant proinflammatory mediator in supernatants of antibiotic-treated bacteria[J]. Infect Immun, 1994, 62(11):4975–4980.
[14]
Leeson MC, Morrison DC. Induction of proinflammatory responses in human monocytes by particular and soluble forms of lipopolysaccharide[J]. Shock, 1994, 2(4):235–245.
[15]
Young LS, Stevens P, Ingram J. Functional role of antibody against "core" glycolipid of Enterobacteriaceae[J]. J Clin Invest, 1975, 56(4):850–861.
[16]
Ziegler EJ, Douglas H, Sherman JE, et al. Treatment of E. coli and klebsiella bacteremia in agranulocytic animals with antiserum to a UDP-gal epimerase-deficient mutant[J]. J Immunol, 1973, 111(2):433–438.
[17]
Lynn WA. Anti-endotoxin therapeutic options for the treatment of sepsis[J]. J Antimicrob Chemother, 1998, 41 Suppl A:71–80.
[18]
Watkins LR, Hutchinson MR, Rice KC, et al. The "toll" of opioid-induced glial activation: improving the clinical efficacy of opioids by targeting glia[J]. Trends Pharmacol Sci, 2009, 30(11):581–591.
[19]
Tidswell M, LaRosa SP. Toll-like receptor-4 antagonist eritoran tetrasodium for severe sepsis[J]. Expert Rev Anti Infect Ther, 2011, 9(5):507–520.
[20]
Opal SM, Laterre PF, Francois B, et al. Effect of eritoran, an antagonist of MD2-TLR4, on mortality in patients with severe sepsis: the ACCESS randomized trial[J]. JAMA, 2013, 309(11):1154–1162.
[21]
Lee JH, Del Sorbo L, Uhlig S et al. Intercellular adhesion molecule-1 mediates cellular cross-talk between parenchymal and immune cells after lipopolysaccharide neutralization[J]. J Immunol, 2004, 172(1):608–616.
[22]
Kayagaki N, Wong MT, Stowe IB, et al. Noncanonical inflammasome activation by intracellular LPS independent of TLR4[J]. Science, 2013, 341(6151):1246–1249.
[23]
Hagar JA, Powell DA, Aachoui Y, et al. Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock[J]. Science, 2013, 341(6151):1250–1253.
[24]
Shi J, Zhao Y, Wang Y, et al. Inflammatory caspases are immune receptors for intracellular LPS[J]. Nature, 2014, 514(7521):187–192.
[1] 朱庆程, 谈定玉. 活化α7烟碱型乙酰胆碱受体对呼吸机相关肺损伤模型大鼠的保护机制研究[J]. 中华危重症医学杂志(电子版), 2018, 11(05): 322-326.
[2] 郑树. 结直肠癌转移复发的转化医学研究[J]. 中华结直肠疾病电子杂志, 2013, 02(01): 2-5.
[3] 常炜, 刘玲. 呼吸驱动及呼吸努力床旁评估的研究进展[J]. 中华重症医学电子杂志, 2023, 09(01): 25-29.
[4] 池熠, 隆云, 何怀武. 机械能:评估呼吸机相关肺损伤的新思路[J]. 中华重症医学电子杂志, 2019, 05(04): 307-310.
[5] 周建芳, 田洪成, 杜斌. 全身性感染的流行病学进展[J]. 中华重症医学电子杂志, 2016, 02(04): 231-239.
[6] 谢志超, 康焰. -反方观点-全身性感染新定义:不利于早期识别和早期治疗[J]. 中华重症医学电子杂志, 2016, 02(03): 180-183.
[7] 彭劲民, 杜斌. 全身性感染临床试验为何得到阴性结果[J]. 中华重症医学电子杂志, 2016, 02(03): 162-166.
阅读次数
全文


摘要