切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2023, Vol. 09 ›› Issue (01) : 25 -29. doi: 10.3877/cma.j.issn.2096-1537.2023.01.005

专题笔谈

呼吸驱动及呼吸努力床旁评估的研究进展
常炜, 刘玲()   
  1. 210009 南京,江苏省重症医学重点实验室 东南大学附属中大医院重症医学科
  • 收稿日期:2022-01-04 出版日期:2023-02-28
  • 通信作者: 刘玲
  • 基金资助:
    国家自然科学基金项目(81870066); 江苏省科技厅重点研发(社发)项目(BE2020786); 江苏省医学青年人才项目(QNRC2016807); 江苏省第六期“333高层次人才培养工程”项目

Advance in bedside evaluation of respiratory drive and effort

Wei Chang, Ling Liu()   

  1. Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
  • Received:2022-01-04 Published:2023-02-28
  • Corresponding author: Ling Liu
引用本文:

常炜, 刘玲. 呼吸驱动及呼吸努力床旁评估的研究进展[J]. 中华重症医学电子杂志, 2023, 09(01): 25-29.

Wei Chang, Ling Liu. Advance in bedside evaluation of respiratory drive and effort[J]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2023, 09(01): 25-29.

过强的呼吸驱动和呼吸努力可导致肺损伤和膈肌损伤,因此在辅助通气过程中监测呼吸驱动和呼吸努力尤为重要。临床实践中,膈肌电活动和气道阻断压可用来监测呼吸驱动;而食管压和呼气阻断可用来监测呼吸努力。临床上可通过调整呼吸支持力度、镇静剂量和肌松程度来调控适当的呼吸驱动及呼吸努力,以实现肺和膈肌保护性通气策略,防止呼吸机相关肺和膈肌功能损伤。

Excessive respiratory drive and effort is associated with lung and diaphragm injury, thus respiratory drive and effort monitoring during mechanical ventilation is especially important. In clinical practice, diaphragm electrical activity and airway occlusion pressure are used to monitor respiratory drive, esophageal pressure and expiratory occlusion are used to monitor respiratory effort. Clinically, appropriate respiratory and effort can be achieved with lung and diaphragm protective ventilation strategy by regulating respiratory support level, adjusting sedative dosages and degree of neuromuscular blockade as to prevent ventilator-induced lung and diaphragm injury.

图1 使用P0.1监测呼吸驱动12。图a为呼吸驱动过大;图b为呼吸驱动不足注:Flow为气流;Paw为正向气道压;P0.1为气道阻断压;1 cmH2O=0.098 kPa
图2 Pmus的构成和PTP12注:Flow为气流;Pes为食管压;Pcw为克服胸廓的弹性回缩力;Pmus为吸气肌肉压;PTP为压力-时间乘积
图3 呼气相阻断监测呼吸驱动20注:Flow为气流;Paw为正向气道压;Pocc为负压变化的幅度;Pcw为克服胸廓的弹性回缩力;Predicted Pmus为预估的吸气肌肉压;Predicted ΔPL,dyn为估算的动态跨肺驱动力;Pes为食管压;ΔPes为食管压变化;PL为跨肺压;1 cmH2O=0.098 kPa
表1 常见呼吸驱动和呼吸努力监测参数的参考安全范围
1
Telias I, Brochard L, Goligher EC. Is my patient's respiratory drive (too) high? [J]. Intensive Care Med, 2018, 44(11): 1936-1939.
2
de Vries H, Jonkman A, Shi ZH, et al. Assessing breathing effort in mechanical ventilation: physiology and clinical implications [J]. Ann Transl Med, 2018, 6(19): 387.
3
Piquilloud L, Beloncle F, Richard JM, et al. Information conveyed by electrical diaphragmatic activity during unstressed, stressed and assisted spontaneous breathing: a physiological study [J]. Ann Intensive Care, 2019, 9(1): 89.
4
Barwing J, Pedroni C, Olgemoller U, et al. Electrical activity of the diaphragm (EAdi) as a monitoring parameter in difficult weaning from respirator: a pilot study [J]. Crit Care, 2013, 17(4): R182.
5
Tonelli R, Fantini R, Tabbi L, et al. Early inspiratory effort assessment by esophageal manometry predicts noninvasive ventilation outcome in de novo respiratory failure. A pilot study [J]. Am J Respir Crit Care Med, 2020, 202(4): 558-567.
6
Di Mussi R, Spadaro S, Mirabella L, et al. Impact of prolonged assisted ventilation on diaphragmatic efficiency: NAVA versus PSV [J]. Crit Care, 2016, 20: 1.
7
Telias I, Damiani F, Brochard L. The airway occlusion pressure (P0.1) to monitor respiratory drive during mechanical ventilation: increasing awareness of a not-so-new problem [J]. Intensive Care Med, 2018, 44(9): 1532-1535.
8
Pletsch-Assuncao R, Caleffi Pereira M, Ferreira JG, et al. Accuracy of invasive and noninvasive parameters for diagnosing ventilatory overassistance during pressure support ventilation [J]. Crit Care Med, 2018, 46(3): 411-417.
9
Rittayamai N, Beloncle F, Goligher EC, et al. Effect of inspiratory synchronization during pressure-controlled ventilation on lung distension and inspiratory effort [J]. Ann Intensive Care, 2017, 7(1): 100.
10
Dzierba AL, Khalil AM, Derry KL, et al. Discordance between respiratory drive and sedation depth in critically ill patients receiving mechanical ventilation [J]. Crit Care Med, 2021, 49(12): 2090-2101.
11
Beloncle F, Piquilloud L, Olivier PY, et al. Accuracy of P0.1 measurements performed by ICU ventilators: a bench study [J]. Ann Intensive Care, 2019, 9(1): 104.
12
Bertoni M, Spadaro S, Goligher EC. Monitoring patient respiratory effort during mechanical ventilation: lung and diaphragm-protective ventilation [J]. Crit Care, 2020, 24(1): 106.
13
Windisch W, Weber-Carstens S, Kluge S, et al. Invasive and non-invasive ventilation in patients with COVID-19 [J]. Dtsch Arztebl Int, 2020, 117(31-32): 528-533.
14
Goligher EC, Dres M, Fan E, et al. Mechanical ventilation-induced diaphragm atrophy strongly impacts clinical outcomes [J]. Am J Respir Crit Care Med, 2018, 197(2): 204-213.
15
Mauri T, Yoshida T, Bellani G, et al. Esophageal and transpulmonary pressure in the clinical setting: meaning, usefulness and perspectives [J]. Intensive Care Med, 2016, 42(9): 1360-1373.
16
Yoshida T, Torsani V, Gomes S, et al. Spontaneous effort causes occult pendelluft during mechanical ventilation [J]. Am J Respir Crit Care Med, 2013, 188(12): 1420-1427.
17
Baedorf Kassis E, Loring SH, Talmor D. Mortality and pulmonary mechanics in relation to respiratory system and transpulmonary driving pressures in ARDS [J]. Intensive Care Med, 2016, 42(8): 1206-1213.
18
Yoshida T, Amato MBP, Grieco DL, et al. Esophageal manometry and regional transpulmonary pressure in lung injury [J]. Am J Respir Crit Care Med, 2018, 197(8): 1018-1026.
19
Bertoni M, Telias I, Urner M, et al. A novel non-invasive method to detect excessively high respiratory effort and dynamic transpulmonary driving pressure during mechanical ventilation [J]. Crit Care, 2019, 23(1): 346.
20
Dianti J, Bertoni M, Goligher EC. Monitoring patient-ventilator interaction by an end-expiratory occlusion maneuver [J]. Intensive Care Med, 2020, 46(12): 2338-2341.
[1] 朱庆程, 谈定玉. 活化α7烟碱型乙酰胆碱受体对呼吸机相关肺损伤模型大鼠的保护机制研究[J]. 中华危重症医学杂志(电子版), 2018, 11(05): 322-326.
[2] 陈栋玉, 潘纯, 杨毅. ARDS患者自主呼吸努力评估方法的研究进展[J]. 中华重症医学电子杂志, 2023, 09(01): 84-88.
[3] 刘玲, 赵慧颖, 李绪言, 程渊, 罗巧侠, 俞云, 杨毅, 邱海波. 新型冠状病毒肺炎患者自主呼吸努力的床旁监测方法[J]. 中华重症医学电子杂志, 2022, 08(04): 367-370.
[4] 李卿, 于月, 何远超, 梁媚皓, 陈辉, 刘玲. 纳布啡对心胸外科术后机械通气患者呼吸驱动的影响[J]. 中华重症医学电子杂志, 2022, 08(03): 230-234.
[5] 吴晓燕, 杨志祥, 於江泉, 郑瑞强. 扬州地区老年COVID-19患者临床特征分析及俯卧位通气疗效评价[J]. 中华重症医学电子杂志, 2022, 08(03): 216-222.
[6] 李晗, 陈强, 韩旭东. ARDS患者自戕式肺损伤的机制和干预措施[J]. 中华重症医学电子杂志, 2021, 07(01): 66-70.
[7] 潘纯, 孙骎, 邱海波, 刘玲. 急性呼吸窘迫综合征及呼吸支持理念:2019年的反思与进步[J]. 中华重症医学电子杂志, 2020, 06(02): 120-123.
[8] 池熠, 隆云, 何怀武. 机械能:评估呼吸机相关肺损伤的新思路[J]. 中华重症医学电子杂志, 2019, 05(04): 307-310.
[9] 张海波, 邱海波. 重症医学研究:从实验室到临床[J]. 中华重症医学电子杂志, 2015, 01(01): 58-60.
阅读次数
全文


摘要