切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2023, Vol. 09 ›› Issue (01) : 69 -77. doi: 10.3877/cma.j.issn.2096-1537.2023.01.012

基础研究

线粒体自噬对肺泡巨噬细胞焦亡的调控作用及其机制
阳莹1, 崔亚梅1, 邵强1, 赵宁1, 陶文强1, 陈家泉1, 徐泽尧1, 钱克俭1, 刘芬1,()   
  1. 1. 330000 南昌,南昌大学附属第一医院重症医学科
  • 收稿日期:2022-09-30 出版日期:2023-02-28
  • 通信作者: 刘芬
  • 基金资助:
    国家自然科学基金项目(81871548,82160363)

Mitophagy inhibits alveolar macrophages pyroptosis by reducing cytosolic mtDNA level

Ying Yang1, Yamei Cui1, Qiang Shao1, Ning Zhao1, Wenqiang Tao1, Jiaquan Chen1, Zeyao Xu1, Kejian Qian1, Fen Liu1,()   

  1. 1. Department of Critical Care Medicine, First Affiliated Hospital of Nanchang University, Nanchang 330000, China
  • Received:2022-09-30 Published:2023-02-28
  • Corresponding author: Fen Liu
引用本文:

阳莹, 崔亚梅, 邵强, 赵宁, 陶文强, 陈家泉, 徐泽尧, 钱克俭, 刘芬. 线粒体自噬对肺泡巨噬细胞焦亡的调控作用及其机制[J/OL]. 中华重症医学电子杂志, 2023, 09(01): 69-77.

Ying Yang, Yamei Cui, Qiang Shao, Ning Zhao, Wenqiang Tao, Jiaquan Chen, Zeyao Xu, Kejian Qian, Fen Liu. Mitophagy inhibits alveolar macrophages pyroptosis by reducing cytosolic mtDNA level[J/OL]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2023, 09(01): 69-77.

目的

初步探讨线粒体自噬对肺泡巨噬细胞(AM)焦亡的调控作用及其机制。

方法

选取大鼠肺泡巨噬细胞NR8383作为研究对象,使用1 μg/ml的脂多糖(LPS)刺激18 h构建脓毒症肺损伤体外模型,使用低浓度溴化乙锭(EtBr)处理大鼠AM构建胞质无线粒体DNA(mtDNA)的ρ0细胞,使用羟基氰氯苯腙(CCCP)增强线粒体自噬,通过转染上调胞质mtDNA水平。设立CON组、LPS组、LPS+ρ0组、LPS+CCCP组、LPS+CCCP+mtDNA组;采用qRT-PCR检测mtDNA拷贝数、胞质mtDNA水平;通过酶联免疫吸附测定(ELISA)检测细胞培养上清液中白介素(IL)-18、IL-1β等炎症因子的分泌水平;采用Western Blot检测NOD样受体热蛋白结构域相关蛋白3(NLRP3)、胱天蛋白酶1前体(pro-caspase-1)、胱天蛋白酶1剪切体(P20)、消皮素D(GSDMD)和消皮素D剪切体(cle-GSDMD)等焦亡相关蛋白的表达水平;采用免疫荧光观察细胞内caspase活性及细胞膜通透性;采用透射电镜观察细胞内线粒体自噬水平;采用Western Blot检测微管相关蛋白轻链B(LC3B)Ⅱ型、LC3BⅠ型等自噬相关蛋白表达水平。

结果

LPS刺激可诱导mtDNA释放至胞质,并促进炎症因子水平、焦亡相关蛋白表达水平、细胞内caspase活性及细胞膜通透性显著升高。通过CCCP增强线粒体自噬可抑制LPS诱导的IL-18(P<0.01)、IL-1β(P<0.01)等炎症因子及NLRP3(P<0.001)、P20(P<0.05)、cle-GSDMD(P<0.01)等焦亡相关蛋白表达水平的上调,并抑制caspase活化及细胞膜透化。而转染外源性mtDNA可逆转CCCP的作用,诱导IL-18(P<0.05)、IL-1β(P<0.01)等炎症因子及NLRP3(P<0.001)、P20(P<0.05)、cle-GSDMD(P<0.05)等焦亡相关蛋白表达水平升高,并活化caspase,增加细胞膜通透性。

结论

增强线粒体自噬可通过降低胞质mtDNA水平抑制LPS诱导的大鼠AM焦亡,减轻炎症反应。

Objective

To preliminarily investigate the regulatory effect and mechanism of mitophagy on alveolar macrophages (AM) pyroptosis.

Methods

Rat AM NR8383 was selected to construct in vitro model of sepsis-associated acute lung injury (ALI) by stimulation with 1 μg/ml lipopolysaccharide (LPS) for 18 h. Rat AM was treated with low concentration of ethidium bromide (EtBr) to construct cytosolic mitochondrial DNA (mtDNA)-free ρ0 cells. Carbonyl cyanide m-chlorophenylhydrazone (CCCP) was used to enhance mitophagy, and cytosolic mtDNA levels were up-regulated by transfection. CON group, LPS group, LPS+ρ0 group, LPS+CCCP group, LPS+CCCP+mtDNA group were set up. mtDNA copy number and cytosolic mtDNA level were detected by qRT-PCR. The secretion levels of inflammatory cytokines interleukin-1β (IL-18) and interleukin-18 (IL-1β) in cell culture supernatant were examined by ELISA. The expression levels of pyroptosis-related proteins NOD-like receptor thermal protein domain associated protein 3 (NLRP3), pro-cysteiny l aspartate-specific protease (pro-caspase-1), P20, gasdermin D (GSDMD) and cle-GSDMD were detected by Western Blot. The activity of caspase and the permeability of cell membrane were observed by immunofluorescence. The level of mitophagy was observed by transmission electron microscopy. The expression levels of mitophagy-related proteins such as light chain 3B (LC3B)Ⅱ and LC3BⅠ were determined by Western Blot.

Results

LPS stimulation could induce mtDNA release into the cytoplasm, and promote the levels of inflammatory factors, pyroptosis related protein expression, intracellular caspase activity and cell membrane permeability. The enhancement of mitophagy by CCCP could inhibit LPS-induced up-regulation of inflammatory factors such as IL-18 (P<0.01) and IL-1β (P<0.01) and pyroptosis related proteins such as NLRP3 (P<0.001), P20 (P<0.05) and Cle-GSDMD (P<0.01), and inhibit caspase activation and cell membrane permeability. Transfection of exogenous mtDNA could reverse the effect of CCCP, induce the expression levels of inflammatory factors such as IL-18 (P<0.05) and IL-1β (P<0.01), and pyroptosis related proteins such as NLRP3 (P<0.001), P20 (P<0.05) and Cle-GSDMD (P<0.05), activate caspase, and increase cell membrane permeability.

Conclusion

Enhancing mitophagy can inhibit LPS-induced AM pyroptosis and inflammation in rats by decreasing cytosolic mtDNA level.

表1 qRT-PCR引物序列
表2 Western Blot相关抗体
图1 LPS通过促进mtDNA释放至胞质诱导AM炎症反应。图a:qRT-PCR检测大鼠AM内的mtDNA拷贝数;图b:qRT-PCR检测大鼠AM内胞质mtDNA水平;图c:ELISA检测细胞上清液中IL-18、IL-1β的分泌水平。**P<0.01,***P<0.001;n=3注:CON为空白对照;EtBr为溴化乙锭;LPS为脂多糖;mtDNA为线粒体DNA;AM为肺泡巨噬细胞;ρ0为胞质无线粒体DNA的肺泡巨噬细胞;qRT-PCR为实时荧光反转录聚合酶链反应;ELISA为酶联免疫吸附测定;IL-18为白介素18;IL-1β为白介素1β
图2 胞质mtDNA通过诱导AM焦亡加重炎症反应。图a、b:Western Blot检测NLRP3、pro-caspase-1、P20、GSDMD和cle-GSDMD的蛋白表达及水平;图c:大鼠AM的FAM-FLICA caspase荧光显微镜分析,放大倍数×200,比例尺=100 μm。*P<0.05,**P<0.01,***P<0.001;n=3注:CON为空白对照;LPS为脂多糖;mtDNA为线粒体DNA;AM为肺泡巨噬细胞;ρ0为胞质无线粒体DNA的肺泡巨噬细胞;Western Blot为蛋白质免疫印迹实验;NLRP3为NOD样受体蛋白热蛋白结构域相关蛋白3;pro-caspase-1为胱天蛋白酶1前体;P20为胱天蛋白酶1剪切体;GSDMD为消皮素D;cle-GSDMD为消皮素D剪切体;GAPDH为甘油醛-3-磷酸脱氢酶;Hoechst为细胞核染料;FAM-FLICA为有活性caspase的荧光探针;PI为碘化丙啶
图3 透射电镜下大鼠AM的线粒体形态及CCCP对线粒体自噬的影响。图a:透射电镜下大鼠AM线粒体形态及MP、ML形成情况;黑色箭头代表细胞核,蓝色箭头代表正常线粒体,红色单箭头表示MP,是受损线粒体被早期自噬体包裹所形成,红色双箭头表示ML,是中期线粒体自噬体与溶酶体融合后,所形成的成熟线粒体自噬溶酶体;放大倍数×10 000。图b、c:Western Blot检测大鼠AM内LC3BⅡ、LC3BⅠ的蛋白表达及水平;*P<0.05,**P<0.01;n=3注:CON为空白对照组;LPS为脂多糖;CCCP为羟基氰氯苯腙;AM为肺泡巨噬细胞;MP为线粒体自噬体;ML为线粒体自噬溶酶体;Western Blot为蛋白质免疫印迹实验;LC3BⅡ为微管相关蛋白轻链BⅡ;LC3BⅠ为微管相关蛋白轻链BⅠ;GAPDH为甘油醛-3-磷酸脱氢酶
图4 线粒体自噬通过降低胞质mtDNA水平抑制LPS诱导的AM焦亡。图a:qRT-PCR检测大鼠AM内胞质mtDNA水平;图b:ELISA检测细胞上清液中IL-18、IL-1β的分泌水平;图c、d:Western Blot检测NLRP3、pro-caspase-1、P20、GSDMD和cle-GSDMD的蛋白表达水平;图e:大鼠AM的FAM-FLICA caspase荧光显微镜分析,放大倍数×200,比例尺=100 μm。*P<0.05,**P<0.01,***P<0.001;n=3注:CON为空白对照;LPS为脂多糖;CCCP为羟基氰氯苯腙;mtDNA为线粒体DNA;AM为肺泡巨噬细胞;qRT-PCR为实时荧光反转录聚合酶链反应;ELISA为酶联免疫吸附测定;IL-18为白介素18;IL-1β为白介素1β;Western Blot为蛋白质免疫印迹实验;NLRP3为NOD样受体蛋白热蛋白结构域相关蛋白3;pro-caspase-1为胱天蛋白酶1前体;P20为胱天蛋白酶1剪切体;GSDMD为消皮素D;cle-GSDMD为消皮素D剪切体;GAPDH为甘油醛-3-磷酸脱氢酶;Hoechst为细胞核染料;FAM-FLICA为有活性caspase的荧光探针;PI为碘化丙啶
1
Rudd KE, Johnson SC, Agesa KM, et al. Global, regional, and national sepsis incidence and mortality, 1990-2017: analysis for the Global Burden of Disease Study [J]. Lancet, 2020, 395(10219): 200-211.
2
Lamkanfi M, Dixit VM. Mechanisms and functions of inflammasomes [J]. Cell, 2014, 157(5): 1013-1022.
3
West AP, Shadel GS. Mitochondrial DNA in innate immune responses and inflammatory pathology [J]. Nat Rev Immunol, 2017, 17(6): 363-375.
4
Tartey S, Kanneganti TD. Differential role of the NLRP3 inflammasome in infection and tumorigenesis [J]. Immunology, 2019, 156(4): 329-338.
5
Xian H, Liou YC. Functions of outer mitochondrial membrane proteins: mediating the crosstalk between mitochondrial dynamics and mitophagy [J]. Cell Death Differ, 2021, 28(3): 827-842.
6
Shan S, Shen Z, Zhang C, et al. Mitophagy protects against acetaminophen-induced acute liver injury in mice through inhibiting NLRP3 inflammasome activation [J]. Biochem Pharmacol, 2019, 169: 113643.
7
Dong G, Xu N, Wang M, et al. Anthocyanin extract from purple sweet potato exacerbate mitophagy to ameliorate pyroptosis in Klebsiella pneumoniae infection [J]. Int J Mol Sci, 2021, 22(21): 11422.
8
Ishimoto Y, Inagi R, Yoshihara D, et al. Mitochondrial abnormality facilitates cyst formation in autosomal dominant polycystic kidney disease [J]. Mol Cell Biol, 2017, 37(24): e00337-17.
9
Hashiguchi K, Zhang-Akiyama QM. Establishment of human cell lines lacking mitochondrial DNA [J]. Methods Mol Biol, 2009, 554: 383-391.
10
Gautier EL, Shay T, Miller J, et al. Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages [J]. Nat Immunol, 2012, 13(11): 1118-1128.
11
Killien EY, Huijsmans RLN, Ticknor IL, et al. Acute respiratory distress syndrome following pediatric trauma: application of pediatric acute lung injury consensus conference criteria [J]. Crit Care Med, 2020, 48(1): e26-e33.
12
Riley JS, Tait SW. Mitochondrial DNA in inflammation and immunity [J]. EMBO Rep, 2020, 21(4): e49799.
13
Faas MM, de Vos P. Mitochondrial function in immune cells in health and disease [J]. Biochim Biophys Acta Mol Basis Dis, 2020, 1866(10): 165845.
14
Wang X, Li X, Liu S, et al. PCSK9 regulates pyroptosis via mtDNA damage in chronic myocardial ischemia [J]. Basic Res Cardiol, 2020, 115(6): 66.
15
Li Y, Shen Y, Jin K, et al. The DNA repair nuclease MRE11A functions as a mitochondrial protector and prevents T cell pyroptosis and tissue inflammation [J]. Cell Metab, 2019, 30(3): 477-492 e476.
16
Ning L, Wei W, Wenyang J, et al. Cytosolic DNA-STING-NLRP3 axis is involved in murine acute lung injury induced by lipopolysaccharide [J]. Clin Transl Med, 2020, 10(7): e228.
17
Chen H, Lin H, Dong B, et al. Hydrogen alleviates cell damage and acute lung injury in sepsis via PINK1/Parkin-mediated mitophagy [J]. Inflamm Res, 2021, 70(8): 915-930.
18
Gkirtzimanaki K, Kabrani E, Nikoleri D, et al. IFNalpha impairs autophagic degradation of mtDNA promoting autoreactivity of SLE monocytes in a STING-dependent fashion [J]. Cell Rep, 2018, 25(4): 921-933 e925.
19
Liu W, Li CC, Lu X, et al. Overexpression of transcription factor EB regulates mitochondrial autophagy to protect lipopolysaccharide-induced acute lung injury [J]. Chin Med J (Engl), 2019, 132(11): 1298-1304.
20
Liu H, You L, Wu J, et al. Berberine suppresses influenza virus-triggered NLRP3 inflammasome activation in macrophages by inducing mitophagy and decreasing mitochondrial ROS [J]. J Leukoc Biol, 2020, 108(1): 253-266.
21
Wang C, Yuan J, Du J. Resveratrol alleviates acute lung injury through regulating PLSCR-3-mediated mitochondrial dysfunction and mitophagy in a cecal ligation and puncture model [J]. Eur J Pharmacol, 2021, 913: 174643.
22
Jing R, Hu ZK, Lin F, et al. Mitophagy-Mediated mtDNA release aggravates stretching-induced inflammation and lung epithelial cell injury via the TLR9/MyD88/NF-kappaB pathway [J]. Front Cell Dev Biol, 2020, 8: 819.
[1] 马尧, 杨明义, 许珂, 郝博, 许鹏. 细胞焦亡与类风湿性关节炎的相关研究进展[J/OL]. 中华关节外科杂志(电子版), 2022, 16(05): 586-591.
[2] 周腾达, 陈庆丽, 杨雪林, 陈琪, 徐杰丰, 周光居, 张茂. 西维来司钠对猪心肺复苏后肾肠损伤作用的研究[J/OL]. 中华危重症医学杂志(电子版), 2023, 16(06): 441-447.
[3] 黄蓉, 梁自毓, 祁文瑾. NLRP3炎症小体在胎膜早破孕妇血清中的表达及其意义[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 540-548.
[4] 张永博, 张亮, 陈浏阳, 戴睿, 孙华, 杨盛, 孟博, 彭晴. 线粒体与椎间盘退变[J/OL]. 中华损伤与修复杂志(电子版), 2023, 18(03): 265-269.
[5] 张长文, 林少清, 吕敏捷, 金霄, 朱常军, 冯旰珠. 铜绿假单胞菌分泌蛋白Pec1抑制巨噬细胞自噬及影响铜绿假单胞菌清除效应初步观察[J/OL]. 中华实验和临床感染病杂志(电子版), 2022, 16(06): 370-376.
[6] 廖泽楷, 梁爱琳, 龚启梅. 根尖周病中程序性细胞死亡的研究进展[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(03): 150-155.
[7] 李嘉兴, 孙乙文, 李文星. NLRP3炎性小体在急性胰腺炎中作用的研究进展[J/OL]. 中华普通外科学文献(电子版), 2024, 18(04): 300-304.
[8] 黄威, 刘启, 陈流华, 滕茶香, 区喆建, 刘韩笑, 陈健聪, 张昆松. 新定义的可预测肝癌预后的焦亡相关lncRNA模型[J/OL]. 中华普通外科学文献(电子版), 2023, 17(05): 357-365.
[9] 孙骎, 杨毅, 彭菲. Gasdermin蛋白家族在脓毒症细胞焦亡中的作用研究进展[J/OL]. 中华重症医学电子杂志, 2023, 09(04): 379-384.
[10] 王燕, 梁海乾, 郭姗姗. 炎症小体在创伤性脑损伤中作用的研究进展[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(03): 177-181.
[11] 丁洪基, 赵长江, 孙鹏飞, 王灿, 王贵珍, 李龙龙. 细胞焦亡与疾病的关系研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 682-686.
[12] 于伟伟, 张国高, 吴军, 胡俊, 黄一宁, 徐晶. 线粒体相关内质网膜相关线粒体功能障碍在阿尔茨海默病中的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(02): 223-230.
[13] 刘俊彬, 张晓婷, 郭镜培, 刘佳妮, 于本帅, 张可, 周斌. 熊果酸通过抑制NLRP3介导的小胶质细胞焦亡减轻脑缺血再灌注损伤的研究[J/OL]. 中华介入放射学电子杂志, 2024, 12(03): 221-227.
[14] 阿布力克木·吾拉音, 王永康, 买买提·依斯热依力, 吴朝阳, 克力木·阿不都热依木. 氧化应激、NOD样受体蛋白3炎症小体及细胞焦亡在食管炎性损伤中的研究进展[J/OL]. 中华胃食管反流病电子杂志, 2023, 10(03): 151-155.
[15] 肖韩艳, 王子杰, 王岳, 李岩. 槲皮素通过抑制小鼠骨髓来源泡沫细胞焦亡抗动脉粥样硬化的研究[J/OL]. 中华卫生应急电子杂志, 2024, 10(01): 26-32.
阅读次数
全文


摘要