切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2023, Vol. 09 ›› Issue (01) : 78 -83. doi: 10.3877/cma.j.issn.2096-1537.2023.01.013

基础研究

血管紧张素转换酶2对人肺微血管内皮细胞炎性损伤的调控作用
王洁琼1, 王慧霞1, 赵慧颖1, 安友仲1,()   
  1. 1. 100044 北京,北京大学人民医院重症医学科
  • 收稿日期:2022-04-22 出版日期:2023-02-28
  • 通信作者: 安友仲
  • 基金资助:
    北京市自然科学基金项目(7212124)

Regulation of angiotensin converting enzyme 2 on inflammatory injury of human pulmonary microvascular endothelial cells

Jieqiong Wang1, Huixia Wang1, Huiying Zhao1, Youzhong An1,()   

  1. 1. Department of Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China
  • Received:2022-04-22 Published:2023-02-28
  • Corresponding author: Youzhong An
引用本文:

王洁琼, 王慧霞, 赵慧颖, 安友仲. 血管紧张素转换酶2对人肺微血管内皮细胞炎性损伤的调控作用[J/OL]. 中华重症医学电子杂志, 2023, 09(01): 78-83.

Jieqiong Wang, Huixia Wang, Huiying Zhao, Youzhong An. Regulation of angiotensin converting enzyme 2 on inflammatory injury of human pulmonary microvascular endothelial cells[J/OL]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2023, 09(01): 78-83.

目的

探讨血管紧张素转换酶2(ACE2)对人肺微血管内皮细胞(HPMECs)炎性损伤的调控作用。

方法

利用原代培养HPMECs,构建脂多糖(LPS)损伤模型,(1)量效实验:分别用终浓度为50、100、500、1000 ng/ml的LPS刺激HPMECs 24 h,采用细胞计数试剂盒(CCK-8)法检测细胞活性,采用乳酸脱氢酶(LDH)法检测细胞损伤程度,采用蛋白质印迹实验(Western Blot)检测ACE2的表达情况;(2)以ACE2激动剂DIZE(或ACE2抑制剂MLN-4760)预培养HPMECs后加入LPS再培养24 h,同时设空白对照组(CTRL,正常内皮细胞培养基)及LPS、激动剂(或抑制剂)单独处理组,收集细胞培养上清液,采用LDH法检测细胞损伤程度,采用酶联免疫吸附测定法(ELISA)测定上清液中白介素(IL)-1β、IL-6水平,采用Western Blot法测定ACE2及MasR蛋白表达情况。

结果

在LPS刺激24 h后,与CTRL组比较,HPMECs细胞活力下降,且随着LPS浓度的升高,细胞活力下降明显(P<0.001);ACE2蛋白表达增加,以100 ng/ml组ACE2增加最为显著(2.24±0.57),差异均有统计学意义。与LPS组比较,LPS+DIZE组LDH相对释放活性降低(P<0.0001),炎症因子IL-1β、IL-6释放减少(P<0.01),MasR蛋白表达升高(P<0.01),差异均有统计学意义。与LPS组比较,LPS+MLN-4760组LDH相对释放活性增加(P<0.01),炎症因子IL-1β、IL-6释放增加(P<0.05),ACE2、MasR蛋白表达均降低(P<0.0001),差异均有统计学意义。

结论

LPS诱导HPMECs细胞损伤模型中ACE2表达上调,ACE2功能活化有利于增强MasR表达,减少炎症因子释放,在体外表现为对LPS所诱导的细胞损伤的保护作用。

Objective

To investigate the regulatory effect of angiotensin converting enzyme 2 (ACE2) on inflammatory injury of human pulmonary microvascular endothelial cells (HPMECs).

Methods

The primary cultured HPMECs were treated with lipopolysaccharide (LPS) as an injury model. LPS dose dependent response and ACE2 agonist/antagonist intervention experiments were carried out: (1) Dose dependent response experiment: HPMECs were treated with LPS at different concentrations of 50, 100, 500, and 1000 ng/ml for 24 h. Cell counting kit-8 (CCK-8) method was used to detect the cell viability. Lactate dehydrogenase (LDH) activity was tested to reflect the degree of cell injury and ACE2 expression was tested by Western blot. (2) HPMECs were pre-incubated with the ACE2 agonist DIZE (or ACE2 inhibitor MLN-4760), followd by adding LPS, culture for another 24 hours. Meanwhile a blank control group (normal endothelial cell medium) and LPS, agonist (or inhibitor) were used. Interleukin 1β (IL-1β) and IL-6 levels in the cell culture supernatant were determined by enzyme-linked immunosorbent assay. The expression of ACE2 and MasR were testes by Western Blot.

Results

After 24 h of LPS stimulation, the cell viability of HPMECs decreased compared with that of CTRL group, and the cell viability decreased significantly with the increase of LPS concentration (P<0.001). The ACE2 expression increased, and reach the highest level in 100 ng/ml group (2.24±0.57). Compared with LPS group, LDH relative release activity, IL-1β and IL-6 release were significantly decreased ( all P<0.01) while MasR protein expression was significantly increased (P<0.01) in LPS+DIZE group. Compared with LPS group, the relative release activity of LDH and IL-1β and IL-6 level were increased while ACE2 and MasR expression decreased significantly in LPS+MLN-4760 group (P<0.0001).

Conclusion

LPS-induced HPMECs cell injury model up-regulates ACE2 expression. Activating ACE2 function can enhance the expression of MasR and reduce the release of inflammatory factors, thereby alleviating the cell injury induced by LPS.

图1 不同剂量LPS刺激对HPMECs细胞活性及ACE2蛋白表达的影响。图a为不同剂量LPS刺激下HPMECs细胞活力;图b为不同剂量LPS刺激下细胞损伤程度;图c、d为不同剂量LPS刺激下ACE2蛋白表达变化注:与CTRL组比较,aP<0.05,bP<0.01,cP<0.001dP<0.0001;CTRL为空白对照组;LPS为脂多糖;HPMECs为人肺微血管内皮细胞;LDH为乳酸脱氢酶;ACE2为血管紧张素转换酶2;GAPDH为磷酸甘油醛脱氢酶
图2 不同剂量LPS刺激下ACE2激动剂DIZE对LDH活性、炎症因子、ACE 2、MasR蛋白表达的影响。图a为ACE2激动剂DIZE对LDH活性的影响;图b为ACE2激动剂DIZE对IL-1β释放水平的影响;图c为ACE2激动剂DIZE对IL-6释放水平的影响;图d为ACE2激动剂DIZE对ACE2、MasR蛋白表达的影响;图e为ACE2激动剂DIZE对ACE2表达的影响;图f为ACE2激动剂DIZE对MasR表达的影响注:与CTRL组比较,aP<0.05,bP<0.01,cP<0.001dP<0.0001;与LPS组比较,fP<0.01,iP<0.0001;CTRL为空白对照组;LPS为脂多糖;DIZE为二乙酰胺三氮脒;LDH为乳酸脱氢酶;IL为白介素;ACE2为血管紧张素转换酶2;MasR为线粒体组装受体;GAPDH为磷酸甘油醛脱氢酶
图3 不同剂量LPS刺激下ACE2抑制剂MLN-4760对LDH活性、炎症因子、ACE2、MasR蛋白表达的影响。图a为ACE2抑制剂MLN-4760对LDH活性的影响;图b为ACE2抑制剂MLN-4760对IL-1β释放水平的影响;图c为ACE2抑制剂MLN-4760对IL-6释放水平的影响;图d为ACE2抑制剂MLN-4760对ACE2、MasR蛋白表达的影响;图e为ACE2抑制剂MLN-4760对ACE2表达的影响;图f为ACE2抑制剂MLN-4760对MasR表达的影响注:与CTRL组比较,aP<0.05,bP<0.01,cP<0.001dP<0.0001;与LPS组比较,eP<0.05,fP<0.01,iP<0.0001;CTRL为空白对照组;LPS为脂多糖;HPMECs为人肺微血管内皮细胞;LDH为乳酸脱氢酶;IL为白介素;ACE2为血管紧张素转换酶2;MasR为线粒体组装受体;GAPDH为磷酸甘油醛脱氢酶
1
Kurihara C, Manerikar A, Querrey M, et al. Clinical characteristics and outcomes of patients with COVID-19-associated acute respiratory distress syndrome who underwent lung transplant [J]. JAMA, 2022, 327(7): 652-661.
2
Richardson S, Hirsch JS, Narasimhan M, et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area [J]. JAMA, 2020, 323(20): 2052-2059.
3
Spadaro S, Park M, Turrini C, et al. Biomarkers for acute respiratory distress syndrome and prospects for personalised medicine [J]. J Inflamm (Lond), 2019, 16(1): 1.
4
Huppert LA, Matthay MA, Ware LB. Pathogenesis of acute respiratory distress syndrome [J]. Semin Respir Crit Care Med, 2019, 40(1): 31-39.
5
El-Arif G, Farhat A, Khazaal S, et al. The renin-angiotensin system: a key role in SARS-CoV-2-induced COVID-19 [J]. Molecules, 2021, 26(22): 6945.
6
Menachery VD, Yount BLJr, Debbink K, et al. A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence [J]. Nat Med, 2015, 21(12): 1508-1513.
7
Gheblawi M, Wang K, Viveiros A, et al. Angiotensin-converting enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system: celebrating the 20th anniversary of the discovery of ACE2 [J]. Circ Res, 2020, 126(10): 1456-1474.
8
Wang D, Chai XQ, Magnussen CG, et al. Renin-angiotensin-system, a potential pharmacological candidate, in acute respiratory distress syndrome during mechanical ventilation [J]. Pulm Pharmacol Ther, 2019, 58: 101833.
9
Catarata MJ, Ribeiro R, Oliveira MJ, et al. Renin-angiotensin system in lung tumor and microenvironment interactions [J]. Cancers, 2020, 12(6): 1457.
10
Patel VB, Zhong JC, Grant MB, et al. Role of the ACE2/angiotensin 1-7 axis of the renin-angiotensin system in heart failure [J]. Circ Res, 2016, 118(8): 1313-1326.
11
Hung YH, Hsieh WY, Hsieh JS, et al. Alternative roles of STAT3 and MAPK signaling pathways in the MMPs activation and progression of lung injury induced by cigarette smoke exposure in ACE2 knockout mice [J]. Int J Biol Sci, 2016, 12(4): 454-465.
12
Wang S, Tan Y, Yang T, et al. Pulmonary AngⅡ promotes LPS-induced lung inflammation by regulating microRNA-143 [J]. Cytotechnology, 2021, 73(5): 745-754.
13
Wang K, Liu X, Xiao H, et al. The correlation between inflammatory injury induced by LPS and RAS in EpH4-Ev cells [J]. Int Immunopharmacol, 2017, 46: 23-30.
14
Li Y, Cao Y, Zeng Z, et al. Angiotensin-converting enzyme 2/angiotensin-(1-7)/Mas axis prevents lipopolysaccharide-induced apoptosis of pulmonary microvascular endothelial cells by inhibiting JNK/NF-κB pathways [J]. Sci Rep, 2015, 5: 8209.
15
Ye R, Liu Z. ACE2 exhibits protective effects against LPS-induced acute lung injury in mice by inhibiting the LPS-TLR4 pathway [J]. Exp Mol Pathol, 2020, 113: 104350.
16
Dhawale VS, Amara VR, Karpe PA, et al. Activation of angiotensin-converting enzyme 2 (ACE2) attenuates allergic airway inflammation in rat asthma model [J]. Toxicol Appl Pharmacol, 2016, 306: 17-26.
17
李树民, 王枭鹰, 刘帆, 等. 血管紧张素转换酶2激动剂三氮脒减轻小鼠肢体缺血再灌注引发的肺损伤 [J]. 生理学报, 2018, 70(2): 9.
18
Silva CC, Correa AMB, Kushmerick C, et al. Angiotensin-converting enzyme 2 activator, DIZE in the basolateral amygdala attenuates the tachycardic response to acute stress by modulating glutamatergic tone [J]. Neuropeptides, 2020, 83: 102076.
19
Wang Y, Fu W, Xue Y, et al. Ginsenoside Rc ameliorates endothelial insulin resistance via upregulation of angiotensin-converting enzyme 2 [J]. Front Pharmacol, 2021, 12: 620524.
[1] 江雅婷, 刘林峰, 沈辰曦, 陈奔, 刘婷, 龚裕强. 组织相关巨噬素3 保护肺血管内皮糖萼治疗急性呼吸窘迫综合征的机制研究[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(05): 353-362.
[2] 李振翮, 魏长青, 甄国栋, 李振富. 脓毒症并发急性呼吸窘迫综合征患者血清S1P、Wnt5a变化及其临床意义[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 293-300.
[3] 杨茂宪, 沈鹏, 王倩倩, 吴旺, 沈永帅, 蒋禛, 徐龙生, 朱建刚, 刘倍倍. 吡啶甲酸镁联合地塞米松对急性呼吸窘迫综合征大鼠的治疗作用研究[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(03): 196-203.
[4] 李智, 冯芸. NF-κB 与MAPK 信号通路及其潜在治疗靶点在急性呼吸窘迫综合征中的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 840-843.
[5] 魏丁, 乔艳艳, 顾兴, 张燕, 李艳燕, 钱卫生, 潘蕾, 高永恒, 金发光. 体外膜肺氧合救治急性呼吸窘迫综合征不良预后危险因素分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(03): 363-367.
[6] 杨东星, 沈鹏, 赵慧颖. 免疫球蛋白联合依库珠单抗治疗GBS 并发重度ARDS 患者一例[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 404-408.
[7] 王晓霞, 乌丹, 张江英, 乌雅罕, 郝颖楠, 斯日古楞. 《2023 年美国胸科学会关于成人急性呼吸窘迫综合征患者管理的临床实践指南更新》解读[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 338-343.
[8] 田学, 谢晖, 王瑞兰. 急性呼吸窘迫综合征相关肺纤维化的研究进展[J/OL]. 中华重症医学电子杂志, 2024, 10(03): 258-264.
[9] 李松栗, 黄蔚, 巢杰, 杨毅, 邱海波. 单核/巨噬细胞来源的细胞外囊泡在急性呼吸窘迫综合征中的研究进展[J/OL]. 中华重症医学电子杂志, 2024, 10(03): 253-257.
[10] 杨永红, 杨莹, 齐红蕾, 刘福瑞, 朱金源. 单细胞测序在急性呼吸窘迫综合征中的应用进展[J/OL]. 中华重症医学电子杂志, 2024, 10(03): 248-252.
[11] 倪韫晖, 杨毅, 袁雪燕, 邱海波. 胸壁加压在急性呼吸窘迫综合征中的应用和临床进展[J/OL]. 中华重症医学电子杂志, 2024, 10(03): 243-247.
[12] 孙藏岚, 黄丽丽, 李小雨, 邱海波. 脂质组学在急性呼吸窘迫综合征中的应用和临床进展[J/OL]. 中华重症医学电子杂志, 2024, 10(02): 127-135.
[13] 史楠, 袁雪燕, 邱海波. 肺复张在急性呼吸窘迫综合征中的应用和临床进展[J/OL]. 中华重症医学电子杂志, 2024, 10(02): 118-126.
[14] 王永广, 朱鹏, 许千金, 甘桂芬, 石钟山, 潘纯. 急性呼吸窘迫综合征诊断标准亟需更新[J/OL]. 中华重症医学电子杂志, 2024, 10(02): 113-117.
[15] 刘悦, 潘纯. 急性呼吸窘迫综合征患者肌松剂滴定的必要性与可行性[J/OL]. 中华重症医学电子杂志, 2024, 10(02): 108-112.
阅读次数
全文


摘要