1 |
Sakurai K, Miyashita T, Okazaki M, et al. Role for neutrophil extracellular traps (NETs) and platelet aggregation in early sepsis-induced hepatic dysfunction [J]. In Vivo, 2017, 31(6): 1051-1058.
|
2 |
Shen XF, Cao K, Jiang JP, et al. Neutrophil dysregulation during sepsis: an overview and update [J]. J Cell Mol Med, 2017, 21(9): 1687-1697.
|
3 |
Şafak B, Baykan Ö, Kılınç O, et al. The Importance of Mean Neutrophil Volume (MNV) Values in Differential Diagnosis of Bacterial Sepsis [J]. J Natl Med Assoc, 2017, 109(3): 211-214.
|
4 |
Yaroustovsky M, Abramyan M, Komardina E, et al. Selective LPS adsorption using polymyxin b-immobilized fiber cartridges in sepsis patients following cardiac surgery [J]. Shock, 2018, 49(6): 658-666.
|
5 |
Wang X, Qin W, Song M, et al. Exogenous carbon monoxide inhibits neutrophil infiltration in LPS-induced sepsis by interfering with FPR1 via p38 MAPK but not GRK2 [J]. Oncotarget, 2016, 7(23): 34250-34265.
|
6 |
姚咏明. 深化对血必净注射液治疗脓毒症新机制的认识 [J]. 中国中西医结合急救杂志, 2013, 4(1): 193-194.
|
7 |
姚咏明,栾樱译. 客观评价脓毒症生物标志物的临床意义 [J]. 中国危重病急救医学, 2012, 24(9): 517-519.
|
8 |
de Almeida L, Dorfleutner A, Stehlik C. In vivo analysis of neutrophil infiltration during LPS-induced peritonitis [J]. Bio Protoc, 2016, 6(19): e1945.
|
9 |
吕汪洄,秦魏婷,张锦丽, 等. 苦柯胺B对脂多糖诱导的脓毒症小鼠小肠炎症反应的抑制作用及分子机制 [J]. 中华危重病急救医学, 2015, 27(2): 121-126.
|
10 |
张锦丽,秦魏婷,吕汪洄, 等.苦柯胺B对脓毒症小鼠肺脏炎症反应的抑制作用 [J]. 中华危重病急救医学, 2014, 26(7): 493-497.
|
11 |
Yaroustovsky M, Rogalskaya E, Plyushch M, et al. The level of oxidative neutrophil response when determining endotoxin activity assay: a new biomarker for defining the indications and effectiveness of intensive care in patients with sepsis [J]. Int J Inflam, 2017,2017: 3495293.
|
12 |
Wang B, Chen G, Li J, et al. Neutrophil gelatinase-associated lipocalin predicts myocardial dysfunction and mortality in severe sepsis and septic shock [J]. Int J Cardiol, 2017, 227: 589-594.
|
13 |
Zonneveld R, Molema G, Plötz FB. Analyzing neutrophil morphology, mechanics, and motility in sepsis: options and challenges for novel bedside technologies [J]. Crit Care Med, 2016, 44(1): 218-228.
|
14 |
Qin W, Zhang J, Lv W, et al. Effect of carbon monoxide-releasing molecules Ⅱ-liberated CO on suppressing inflammatory response in sepsis by interfering with nuclear factor kappa B activation [J]. PLoS One, 2013,8(10): e75840.
|
15 |
Stolyarova E, Beduleva L, Sidorov A, et al. The role of neutrophil proteases in lps-induced production of regulatory rheumatoid factor that suppresses autoimmunity [J]. Endocr Metab Immune Disord Drug Targets, 2017, 17(1): 71-77.
|
16 |
Yang L, Zhou X, Huang W, et al. Protective Effect of Phillyrin on Lethal LPS-Induced Neutrophil Inflammation in Zebrafish [J]. Cell Physiol Biochem, 2017, 43(5): 2074-2087.
|
17 |
Deschildre A, Pichavant M, Engelmann I, et al. Virus-triggered exacerbation in allergic asthmatic children: neutrophilic airway inflammation and alteration of virus sensors characterize a subgroup of patients [J]. Respir Res, 2017,18(1): 191.
|
18 |
Huang G, Xu XC, Zhou JS, et al. Neutrophilic inflammation in the immune responses of chronic obstructive pulmonary disease: lessons from animal models [J]. J Immunol Res, 2017, 2017: 7915975.
|
19 |
Robertson JD, Ward JR, Avila-Olias M, et al. Targeting neutrophilic inflammation using polymersome-mediated cellular delivery [J]. J Immunol, 2017, 198(9): 3596-3604.
|
20 |
Jiang L, Fei D, Gong R, et al. CORM-2 inhibits TXNIP/NLRP3 inflammasome pathway in LPS-induced acute lung injury [J]. Inflamm Res, 2016, 65(11): 905-915.
|
21 |
Liu D, Liang F, Wang X, et al. Suppressive effect of CORM-2 on LPS-induced platelet activation by glycoprotein mediated HS1 phosphorylation interference [J]. PLoS One, 2013, 8(12): e83112.
|