1 |
Veglia F, Sanseviero E, Gabrilovich DI. Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity [J]. Nat Rev Immunol, 2021, 21(8): 485-498.
|
2 |
Krystal G, Sly L, Antignano F, et al. Re: the terminology issue for myeloid-derived suppressor cells [J]. Cancer Res, 2007, 67(8): 3986.
|
3 |
Schrijver IT, Théroude C, Roger T. Myeloid-derived suppressor cells in sepsis [J]. Front Immunol, 2019, 10: 327.
|
4 |
Barreda DR, Hanington PC, Belosevic M. Regulation of myeloid development and function. by colony stimulating factors [J]. Dev Comp Immunol, 2004, 28(5): 509-554.
|
5 |
Almand B, Clark JI, Nikitina E, et al. Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer [J]. J Immunol, 2001, 166(1): 678-689.
|
6 |
Luan Y, Mosheir E, Menon MC, et al. Monocytic myeloid-derived suppressor cells accumulate in renal transplant patients and mediate CD4+ Foxp3+ Treg expansion [J]. Am J Transplant, 2013, 13(12): 3123-3131.
|
7 |
Condamine T, Dominguez GA, Youn JI, et al. Lectin-type oxidized LDL receptor-1 distinguishes population of human polymorphonuclear myeloid-derived suppressor cells in cancer patients [J]. Sci Immunol, 2016, 1(2): aaf8943.
|
8 |
Esher SK, Fidel PL Jr, Noverr MC. Candida/Staphylococcal polymicrobial intra-abdominal infection: pathogenesis and perspectives for a novel form of trained innate immunity [J]. J Fungi (Basel), 2019, 5(2): 37.
|
9 |
Condamine T, Mastio J, Gabrilovich DI, Transcriptional regulation of myeloid-derived suppressor cells [J]. J Leukoc Biol, 2015, 98(6): 913-922.
|
10 |
Ruan WS, Xu J, Lu YQ. Prospect of using deep learning for predicting differentiation of myeloid progenitor cells after sepsis [J]. Chin Med J (Engl), 2019, 132(15): 1862-1864.
|
11 |
Waeckel L, Venet F, Gossez M, et al. Delayed persistence of elevated monocytic MDSC associates with deleterious outcomes in septic shock: a retrospective cohort study [J]. Crit Care, 2020, 24(1): 132.
|
12 |
Xu J, Peng Y, Yang M, et al. Increased levels of myeloid-derived suppressor cells in esophageal cancer patients is associated with the complication of sepsis [J]. Biomed Pharmacother, 2020, 125: 109864.
|
13 |
Bronte V, Brandau S, Chen SH, et al. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards [J]. Nat Commun, 2016, 7: 12150.
|
14 |
Mairhofer DG, Ortner D, Tripp CH, et al. Impaired gp100-specific CD8+T-cell responses in the presence of myeloid-derived suppressor cells in a spontaneous mouse melanoma model [J]. J Invest Dermatol, 2015, 135(11): 2785-2793.
|
15 |
Youn JI, Nagaraj S, Collazo M, et al. Subsets of myeloid-derived suppressor cells in tumor-bearing mice [J]. J Immunol, 2008, 181(8): 5791-5802.
|
16 |
Ghnewa YG, Fish M, Jennings A, et al. Goodbye SIRS? Innate, trained and adaptive immunity and pathogenesis of organ dysfunction [J]. Med Klin Intensivmed Notfmed, 2020, 115(Suppl 1): 10-14.
|
17 |
Rodriguez PC, Ernstoff MS, Hernandez C, et al. Arginase I-producing myeloid-derived suppressor cells in renal cell carcinoma are a subpopulation of activated granulocytes [J]. Cancer Res, 2009, 69(4): 1553-1560.
|
18 |
Yang R, Cai Z, Zhang Y, et al. CD80 in immune suppression by mouse ovarian carcinoma-associated Gr-1+CD11b+ myeloid cells [J]. Cancer Res, 2006, 66(13): 6807-6815.
|
19 |
Ochoa AC, Zea AH, Hernandez C, et al. Arginase, prostaglandins, and myeloid-derived suppressor cells in renal cell carcinoma [J]. Clin Cancer Res, 2007, 13(2 Pt 2): 721s-726s.
|
20 |
Bronte V, Serafini P, Mazzoni A, et al. L-arginine metabolism in myeloid cells controls T-lymphocyte functions [J]. Trends Immunol, 2003, 24(6): 302-306.
|
21 |
Bingisser RM, Tilbrook PA, Holt PG, et al. Macrophage-derived nitric oxide regulates T cell activation via reversible disruption of the JAK3/STAT5 signaling pathway [J]. J Immunol, 1998, 160(12): 5729-5734.
|
22 |
Schmielau J, Finn OJ. Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of t-cell function in advanced cancer patients [J]. Cancer Res, 2001, 61(12): 4756-4760.
|
23 |
Zea AH, Rodriguez PC, Atkins MB, et al. Arginase-producing myeloid suppressor cells in renal cell carcinoma patients: a mechanism of tumor evasion [J]. Cancer Res, 2005, 65(8): 3044-3048.
|
24 |
Dolcetti L, Peranzoni E, Ugel S, et al. Hierarchy of immunosuppressive strength among myeloid-derived suppressor cell subsets is determined by GM-CSF [J]. Eur J Immunol, 2010, 40(1): 22-35.
|
25 |
Movahedi K, Guilliams M, Van den Bossche J, et al. Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity [J]. Blood, 2008, 111(8): 4233-4244.
|
26 |
Nagaraj S, Gupta K, Pisarev V, et al. Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer [J]. Nat Med, 2007, 13(7): 828-835.
|
27 |
Rastad JL, Green WR. Myeloid-derived suppressor cells in murine AIDS inhibit B-cell responses in part via soluble mediators including reactive oxygen and nitrogen species, and TGF-β [J]. Virology, 2016, 499: 9-22.
|
28 |
Ohl K, Tenbrock K. Reactive oxygen species as regulators of MDSC-mediated immune suppression [J]. Front Immunol, 2018, 9: 2499.
|
29 |
Wang D, DuBois RN. The role of prostaglandin E2 in tumor-associated immunosuppression [J]. Trends Mol Med, 2016, 22(1): 1-3.
|
30 |
Krishnamoorthy M, Gerhardt L, Maleki Vareki S. Immunosuppressive effects of myeloid-derived suppressor cells in cancer and immunotherapy [J]. Cells, 2021, 10(5): 1170.
|
31 |
Veglia F, Perego M, Gabrilovich D. Myeloid-derived suppressor cells coming of age [J]. Nat Immunol, 2018, 19(2): 108-119.
|
32 |
Hollen MK, Stortz JA, Darden D, et al. Myeloid-derived suppressor cell function and epigenetic expression evolves over time after surgical sepsis [J]. Crit Care, 2019, 23(1): 355.
|
33 |
Venet F, Monneret G. Advances in the understanding and treatment of sepsis-induced immunosuppression [J]. Nat Rev Nephrol, 2018, 14(2): 121-137.
|
34 |
Janols H, Bergenfelz C, Allaoui R, et al. A high frequency of MDSCs in sepsis patients, with the granulocytic subtype dominating in gram-positive cases [J]. J Leukoc Biol, 2014, 96(5): 685-693.
|
35 |
Mathias B, Delmas AL, Ozrazgat-Baslanti T, et al. Human myeloid-derived suppressor cells are associated with chronic immune suppression after severe sepsis/septic shock [J]. Ann Surg, 2017, 265(4): 827-834.
|
36 |
Patera AC, Drewry AM, Chang K, et al. Frontline science: defects in immune function in patients with sepsis are associated with PD-1 or expression and can be restored by antibodies targeting PD-1 or PD-L1 [J]. J Leukoc Biol, 2016, 100(6): 1239-1254.
|
37 |
Uhel F, Azzaoui I, Grégoire M, et al. Early expansion of circulating granulocytic myeloid-derived suppressor cells predicts development of nosocomial infections in patients with sepsis [J]. Am J Respir Crit Care Med, 2017, 196(3): 315-327.
|
38 |
Coudereau R, Waeckel L, Cour M, et al. Emergence of immunosuppressive LOX-1+ PMN-MDSC in septic shock and severe COVID-19 patients with acute respiratory distress syndrome [J]. J Leukoc Biol, 2022, 111(2): 489-496.
|
39 |
Darcy CJ, Minigo G, Piera KA, et al. Neutrophils with myeloid derived suppressor function deplete arginine and constrain T cell function in septic shock patients [J]. Crit Care, 2014, 18(4): R163.
|
40 |
Guérin E, Orabona M, Raquil MA, et al. Circulating immature granulocytes with T-cell killing functions predict sepsis deterioration [J]. Crit Care Med, 2014, 42(9): 2007-2018.
|
41 |
Ruan WS, Feng MX, Xu J, et al. Early activation of myeloid-derived suppressor cells participate in sepsis-induced immune suppression via PD-L1/PD-1 axis [J]. Front Immunol, 2020, 11: 1299.
|
42 |
Schrijver IT, Karakike E, Théroude C, et al. High levels of monocytic myeloid-derived suppressor cells are associated with favorable outcome in patients with pneumonia and sepsis with multi-organ failure [J]. Intensive Care Med Exp, 2022, 10(1): 5.
|
43 |
De Zuani M, Hortová-Kohoutková M, Andrejčinová I, et al. Human myeloid-derived suppressor cell expansion during sepsis is revealed by unsupervised clustering of flow cytometric data [J]. Eur J Immunol, 2021, 51(7): 1785-1791.
|
44 |
Poe SL, Arora M, Oriss TB, et al. STAT1-regulated lung MDSC-like cells produce IL-10 and efferocytose apoptotic neutrophils with relevance in resolution of bacterial pneumonia [J]. Mucosal Immunol, 2013, 6(1): 189-199.
|
45 |
Schwarz J, Scheckenbach V, Kugel H, et al. Granulocytic myeloid-derived suppressor cells (GR-MDSC) accumulate in cord blood of preterm infants and remain elevated during the neonatal period [J]. Clin Exp Immunol, 2018, 191(3): 328-337.
|
46 |
He YM, Li X, Perego M, et al. Transitory presence of myeloid-derived suppressor cells in neonates is critical for control of inflammation [J]. Nat Med, 2018, 24(2): 224-231.
|
47 |
Leiber A, Schwarz J, Köstlin N, et al. Neonatal myeloid derived suppressor cells show reduced apoptosis and immunosuppressive activity upon infection with Escherichia coli [J]. Eur J Immunol, 2017, 47(6): 1009-1021.
|
48 |
Niño DF, Sodhi CP, Hackam DJ. Necrotizing enterocolitis: new insights into pathogenesis and mechanisms [J]. Nat Rev Gastroenterol Hepatol, 2016, 13(10): 590-600.
|
49 |
Weber R, Umansky V. Fighting infant infections with myeloid-derived suppressor cells [J]. J Clin Invest, 2019, 129(10): 4080-4082.
|
50 |
Liu Y, Perego M, Xiao Q, et al. Lactoferrin-induced myeloid-derived suppressor cell therapy attenuates pathologic inflammatory conditions in newborn mice [J]. J Clin Invest, 2019, 129(10): 4261-4275.
|
51 |
Diao B, Wang C, Tan Y, et al. Reduction and functional exhaustion of t cells in patients with coronavirus disease 2019 (COVID-19) [J]. Front Immunol, 2020, 11: 827.
|
52 |
Falck-Jones S, Vangeti S, Yu M, et al. Functional monocytic myeloid-derived suppressor cells increase in blood but not airways and predict COVID-19 severity [J]. J Clin Invest, 2021, 131(6): e144734.
|
53 |
Vanderbeke L, Van Mol P, Van Herck Y, et al. Monocyte-driven atypical cytokine storm and aberrant neutrophil activation as key mediators of COVID-19 disease severity [J]. Nat Commun, 2021, 12(1): 4117.
|
54 |
Thompson EA, Cascino K, Ordonez AA, et al. Metabolic programs define dysfunctional immune responses in severe COVID-19 patients [J]. Cell Rep, 2021, 34(11): 108863.
|
55 |
Reizine F, Lesouhaitier M, Gregoire M, et al. SARS-CoV-2-induced ARDS associates with MDSC expansion, lymphocyte dysfunction, and arginine shortage [J]. J Clin Immunol, 2021, 41(3): 515-525.
|
56 |
Jiménez-Cortegana C, Liró J, Palazón-Carrión N, et al. Increased blood monocytic myeloid derived suppressor cells but low regulatory t lymphocytes in patients with mild COVID-19 [J]. Viral Immunol, 2021, 34(9): 639-645.
|
57 |
Sacchi A, Grassi G, Bordoni V, et al. Early expansion of myeloid-derived suppressor cells inhibits SARS-CoV-2 specific T-cell response and may predict fatal COVID-19 outcome [J]. Cell Death Dis, 2020, 11(10): 921.
|
58 |
Agrati C, Sacchi A, Bordoni V, et al. Expansion of myeloid-derived suppressor cells in patients with severe coronavirus disease (COVID-19) [J]. Cell Death Differ, 2020, 27(11): 3196-3207.
|
59 |
Park MJ, Lee SH, Kim EK, et al. Interleukin-10 produced by myeloid-derived suppressor cells is critical for the induction of Tregs and attenuation of rheumatoid inflammation in mice [J]. Sci Rep, 2018, 8(1): 3753.
|
60 |
Tebartz C, Horst SA, Sparwasser T, et al. A major role for myeloid-derived suppressor cells and a minor role for regulatory T cells in immunosuppression during Staphylococcus aureus infection [J]. J Immunol, 2015, 194(3): 1100-1111.
|
61 |
Heim CE, Vidlak D, Scherr TD, et al. Myeloid-derived suppressor cells contribute to. Staphylococcus aureus orthopedic biofilm infection [J]. J Immunol, 2014, 192(8): 3778-3792.
|
62 |
Zhang C, Lei GS, Shao S, et al. Accumulation of myeloid-derived suppressor cells in the. lungs during Pneumocystis pneumonia [J]. Infect Immun, 2012, 80(10): 3634-3641.
|
63 |
Sander LE, Sackett SD, Dierssen U, et al. Hepatic acute-phase proteins control innate immune responses during infection by promoting myeloid-derived suppressor cell function [J]. J Exp Med, 2010, 207(7): 1453-1464.
|
64 |
Chen J, Cai S, Li R, et al. Blockade of Cycloxygenase-2 ameliorates sepsis induced immune-suppression by regulating myeloid-derived suppressor cells [J]. Int Immunopharmacol, 2022, 104: 108506.
|
65 |
Xue Y, Xu Y, Liu X, et al. Correction to: ferumoxytol attenuates the function of MDSCs to ameliorate LPS-induced immunosuppression in sepsis [J]. Nanoscale Res Lett, 2022, 17(1): 3.
|
66 |
Liu T, Yang F, Xie J, et al. All-trans-retinoic acid restores CD4+ T cell response after sepsis by inhibiting the expansion and activation of myeloid-derived suppressor cells [J]. Mol Immunol, 2021, 136: 8-15.
|
67 |
Luo M, Wang H, Liu K, et al. IL-1R1 blockade attenuates liver injury through inhibiting the recruitment of myeloid-derived suppressor cells in sepsis [J]. Biochem Biophys Res Commun, 2022, 620: 21-28.
|
68 |
Chang S, Kim YH, Kim YJ, et al. Taurodeoxycholate increases the number of myeloid-derived suppressor cells that ameliorate sepsis in mice [J]. Front Immunol, 2018, 9: 1984.
|
69 |
McClure C, Brudecki L, Ferguson DA, et al. MicroRNA 21 (miR-21) and miR-181b couple with NFI-A to generate myeloid-derived suppressor cells and promote immunosuppression in late sepsis [J]. Infect Immun, 2014, 82(9): 3816-3825.
|
70 |
McClure C, Ali E, Youssef D, et al. NFI-A disrupts myeloid cell differentiation and maturation in septic mice [J]. J Leukoc Biol, 2016, 99(1): 201-211.
|
71 |
McPeak MB, Youssef D, Williams DA, et al. Myeloid cell-specific knockout of NFI-A improves sepsis survival [J]. Infect Immun, 2017, 85(4): e00066-117.
|
72 |
Alkhateeb T, Bah I, Kumbhare A, et al. Long non-coding RNA Hotairm1 promotes S100A9 support of MDSC expansion during sepsis [J]. J Clin Cell Immunol, 2020, 11(6): 600.
|
73 |
Namkoong H, Ishii M, Fujii H, et al. Clarithromycin expands CD11b+Gr-1+ cells via the STAT3/Bv8 axis to ameliorate lethal endotoxic shock and post-influenza bacterial pneumonia [J]. PLoS Pathog, 2018, 14(4): e1006955.
|
74 |
Derive M, Bouazza Y, Alauzet C, et al. Myeloid-derived suppressor cells control microbial sepsis [J]. Intensive Care Med, 2012, 38(6): 1040-1049.
|
75 |
Reizine F, Grégoire M, Lesouhaitier M, et al. Beneficial effects of citrulline enteral administration on sepsis-induced T cell mitochondrial dysfunction [J]. Proc Natl Acad Sci U S A, 2022, 119(8): e2115139119.
|
76 |
Wijnands KA, Castermans TM, Hommen MP, et al. Arginine and citrulline and the immune response in sepsis [J]. Nutrients, 2015, 7(3): 1426-1463.
|
77 |
Agarwal U, Didelija IC, Yuan Y, et al. Supplemental Citrulline is more efficient than Arginine in increasing systemic Arginine availability in mice [J]. J Nutr, 2017, 147(4): 596-602.
|