| 1 |
Bellani G, Laffey JG, Pham T, et al. Epidemiology, Patterns of Care, and Mortality for Patients With Acute Respiratory Distress Syndrome in Intensive Care Units in 50 Countries [J]. JAMA, 2016, 315(8): 788-800.
|
| 2 |
Dhaliwal K, Scholefield E, Ferenbach D, et al. Monocytes control second-phase neutrophil emigration in established lipopolysaccharide-induced murine lung injury [J]. Am J Respir Crit Care Med, 2012, 186(6): 514-524.
|
| 3 |
Jiang Z, Zhou Q, Gu C, et al. Depletion of circulating monocytes suppresses IL-17 and HMGB1 expression in mice with LPS-induced acute lung injury [J]. Am J Physiol Lung Cell Mol Physiol, 2017, 312(2): L231-L242.
|
| 4 |
Evren E, Ringqvist E, Willinger T. Origin and ontogeny of lung macrophages: from mice to humans [J]. Immunology, 2020, 160(2): 126-138.
|
| 5 |
Williams H, Mack C, Baraz R, et al. Monocyte differentiation and heterogeneity: inter-subset and interindividual differences [J]. Int J Mol Sci, 2023, 24(10): 8757.
|
| 6 |
Vichare R, Janjic J M. Macrophage-targeted nanomedicines for ARDS/ALI: promise and potential [J]. Inflammation, 2022, 45(6): 2124-2141.
|
| 7 |
Li F, Piattini F, Pohlmeier L, et al. Monocyte-derived alveolar macrophages autonomously determine severe outcome of respiratory viral infection [J]. Sci Immunol, 2022, 7(73): eabj5761.
|
| 8 |
Aegerter H, Kulikauskaite J, Crotta S, et al. Influenza-induced monocyte-derived alveolar macrophages confer prolonged antibacterial protection [J]. Nat Immunol, 2020, 21(2): 145-157.
|
| 9 |
Gómez-Rial J, Rivero-Calle I, Salas A, et al. Role of monocytes/macrophages in COVID-19 pathogenesis: implications for therapy [J]. Infect Drug Resist, 2020, 13: 2485-2493.
|
| 10 |
Lee J W, Chun W, Lee H J, et al. The role of macrophages in the development of acute and chronic inflammatory lung diseases [J]. Cells, 2021, 10(4): 897.
|
| 11 |
Codo AC, Davanzo GG, Monteiro LB, et al. Elevated glucose levels favor SARS-CoV-2 infection and monocyte response through a HIF-1α/glycolysis-dependent axis [J]. Cell Metab, 2020, 32(3): 498-499.
|
| 12 |
Theofani E, Semitekolou M, Samitas K, et al. TFEB signaling attenuates NLRP3-driven inflammatory responses in severe asthma [J]. Allergy, 2022, 77(7): 2131-2146.
|
| 13 |
Lazarov T, Juarez-Carreño S, Cox N, et al. Physiology and diseases of tissue-resident macrophages [J]. Nature, 2023, 618(7966): 698-707.
|
| 14 |
Czimmerer Z, Nagy L. Epigenomic regulation of macrophage polarization: Where do the nuclear receptors belong? [J]. Immunol Rev, 2023, 317(1): 152-165.
|
| 15 |
Dong T, Chen X, Xu H, et al. Mitochondrial metabolism mediated macrophage polarization in chronic lung diseases [J]. Pharmacol Ther, 2022, 239: 108208.
|
| 16 |
H etzel M, Ackermann M, Lachmann N. Beyond "big eaters": the versatile role of alveolar macrophages in health and disease [J]. Int J Mol Sci, 2021, 22(7): 3308.
|
| 17 |
Chen S, Saeed A, Liu Q, et al. Macrophages in immunoregulation and therapeutics [J]. Signal Transduct Target Ther, 2023, 8(1): 207.
|
| 18 |
Luo J, Wang J, Zhang J, et al. Nrf2 deficiency exacerbated CLP-induced pulmonary injury and inflammation through autophagy- and NF-κB/PPARγ-mediated macrophage polarization [J]. Cells, 2022, 11(23): 3927.
|
| 19 |
Demkow U. Molecular mechanisms of neutrophil extracellular trap (NETs) degradation [J]. Int J Mol Sci, 2023, 24(5): 4896.
|
| 20 |
Xu F, Ma Y, Huang W, et al. Typically inhibiting USP14 promotes autophagy in M1-like macrophages and alleviates CLP-induced sepsis [J]. Cell Death Dis, 2020, 11(8): 666.
|
| 21 |
Bian Z, Gong Y, Huang T, et al. Deciphering human macrophage development at single-cell resolution [J]. Nature, 2020, 582(7813): 571-576.
|
| 22 |
Evren E, Ringqvist E, Tripathi KP, et al. Distinct developmental pathways from blood monocytes generate human lung macrophage diversity [J]. Immunity, 2021, 54(2): 259-275.
|
| 23 |
Dang W, Tao Y, Xu X, et al. The role of lung macrophages in acute respiratory distress syndrome [J]. Inflamm Res, 2022, 71(12): 1417-1432.
|
| 24 |
Chakarov S, Lim HY, Tan L, et al. Two distinct interstitial macrophage populations coexist across tissues in specific subtissular niches [J]. Science, 2019, 363(6432): eaau0964.
|
| 25 |
Jafarzadeh A, Chauhan P, Saha B, et al. Contribution of monocytes and macrophages to the local tissue inflammation and cytokine storm in COVID-19: lessons from SARS and MERS, and potential therapeutic interventions [J]. Life Sci, 2020, 257: 118102.
|
| 26 |
Junqueira C, Crespo Â, Ranjbar S, et al. FcγR-mediated SARS-CoV-2 infection of monocytes activates inflammation [J]. Nature, 2022, 606(7914): 576-584.
|
| 27 |
Janssen WJ, Barthel L, Muldrow A, et al. Fas determines differential fates of resident and recruited macrophages during resolution of acute lung injury [J]. Am J Respir Crit Care Med, 2011, 184(5): 547-560.
|
| 28 |
Kadomoto S, Izumi K, Mizokami A. Macrophage polarity and disease control [J]. Int J Mol Sci, 2021, 23(1): 144.
|
| 29 |
Li H, Li Y, Song C, et al. Neutrophil extracellular traps augmented alveolar macrophage pyroptosis via AIM2 inflammasome activation in LPS-induced ALI/ARDS [J]. J Inflamm Res, 2021, 14: 4839-4858.
|
| 30 |
Jiang P, Jin Y, Sun M, et al. Extracellular histones aggravate inflammation in ARDS by promoting alveolar macrophage pyroptosis [J]. Mol Immunol, 2021, 135: 53-61.
|
| 31 |
Wang C, Xie J, Zhao L, et al. Alveolar macrophage dysfunction and cytokine storm in the pathogenesis of two severe COVID-19 patients [J]. EBioMedicine, 2020, 57: 102833.
|
| 32 |
Wu D, Wang Y, Hu J, et al. Rab26 promotes macrophage phagocytosis through regulation of MFN2 trafficking to mitochondria [J]. FEBS J, 2023, 290(16): 4023-4039.
|
| 33 |
Mould KJ, Jackson ND, Henson PM, et al. Single cell RNA sequencing identifies unique inflammatory airspace macrophage subsets [J]. JCI Insight, 2019, 4(5): e126556. .
|
| 34 |
Cheng P, Li S, Chen H. Macrophages in Lung Injury, Repair, and Fibrosis [J]. Cells, 2021, 10(2): 436.
|
| 35 |
Huang X, Xiu H, Zhang S, et al. The Role of Macrophages in the Pathogenesis of ALI/ARDS [J]. Mediators Inflamm, 2018, 2018: 1264913.
|
| 36 |
Wang QL, Yang L, Liu ZL, et al. Sirtuin 6 regulates macrophage polarization to alleviate sepsis-induced acute respiratory distress syndrome via dual mechanisms dependent on and independent of autophagy [J]. Cytotherapy, 2022, 24(2): 149-160.
|
| 37 |
Ural BB, Yeung ST, Damani-Yokota P, et al. Identification of a nerve-associated, lung-resident interstitial macrophage subset with distinct localization and immunoregulatory properties [J]. Sci Immunol, 2020, 5(45): eaax8756.
|
| 38 |
Xu J, Wang J, Wang X, et al. Soluble PD-L1 improved direct ARDS by reducing monocyte-derived macrophages [J]. Cell Death Dis, 2020, 11(10): 934.
|
| 39 |
Sun H, Zhang Y, Wang J, et al. Application of lung-targeted lipid nanoparticle-delivered mRNA of soluble PD-L1 via SORT technology in acute respiratory distress syndrome [J]. Theranostics, 2023, 13(14): 4974-4992.
|
| 40 |
Wang H, Tumes DJ, Hercus TR, et al. Blocking the human common beta subunit of the GM-CSF, IL-5 and IL-3 receptors markedly reduces hyperinflammation in ARDS models [J]. Cell Death Dis, 2022, 13(2): 137.
|
| 41 |
Fung NH, Wang H, Vlahos R, et al. Targeting the human βc receptor inhibits inflammatory myeloid cells and lung injury caused by acute cigarette smoke exposure [J]. Respirology, 2022, 27(8): 617-629.
|
| 42 |
Sommer F, Ortiz Zacarı As NV, Heitman LH, et al. Inhibition of macrophage migration in zebrafish larvae demonstrates in vivo efficacy of human CCR2 inhibitors [J]. Dev Comp Immunol, 2021, 116: 103932.
|
| 43 |
Wang S, Bai J, Zhang YL, et al. CXCL1-CXCR2 signalling mediates hypertensive retinopathy by inducing macrophage infiltration [J]. Redox Biol, 2022, 56: 102438.
|
| 44 |
Snelgrove RJ, Goulding J, Didierlaurent AM, et al. A critical function for CD200 in lung immune homeostasis and the severity of influenza infection [J]. Nat Immunol, 2008, 9(9): 1074-1083.
|
| 45 |
Xu H, Zhu Y, Hsiao AW, et al. Bioactive glass-elicited stem cell-derived extracellular vesicles regulate M2 macrophage polarization and angiogenesis to improve tendon regeneration and functional recovery [J]. Biomaterials, 2023, 294: 121998.
|
| 46 |
Tang N, Yang Y, Xie Y, et al. CD274 (PD-L1) negatively regulates M1 macrophage polarization in ALI/ARDS [J]. Front Immunol, 2024, 15: 1344805.
|
| 47 |
Tu C, Wang Z, Xiang E, et al. Human umbilical cord mesenchymal stem cells promote macrophage PD-L1 expression and attenuate acute lung injury in mice [J]. Curr Stem Cell Res Ther, 2022, 17(6): 564-575.
|
| 48 |
Mehta P, Porter JC, Manson JJ, et al. Therapeutic blockade of granulocyte macrophage colony-stimulating factor in COVID-19-associated hyperinflammation: challenges and opportunities [J]. Lancet Respir Med, 2020, 8(8): 822-830.
|
| 49 |
Zhou B, Magana L, Hong Z, et al. The angiocrine Rspondin3 instructs interstitial macrophage transition via metabolic-epigenetic reprogramming and resolves inflammatory injury [J]. Nat Immunol, 2020, 21(11): 1430-1443.
|
| 50 |
Vanneste D, Bai Q, Hasan S, et al. MafB-restricted local monocyte proliferation precedes lung interstitial macrophage differentiation [J]. Nat Immunol, 2023, 24(5): 827-840.
|
| 51 |
Schyns J, Bai Q, Ruscitti C, et al. Non-classical tissue monocytes and two functionally distinct populations of interstitial macrophages populate the mouse lung [J]. Nat Commun, 2019, 10(1): 3964.
|