1 |
Yao RQ, Ren C, Zheng LY, et al. Advances in immune monitoring approaches for sepsis-induced immunosuppression [J]. Front Immunol, 2022, 13: 891024.
|
2 |
翁剑真, 李燕明. 重症肺炎免疫调节治疗: 正反两面 [J]. 中国实用内科杂志, 2022, 42(3): 191-195.
|
3 |
Gupta DL, Bhoi S, Mohan T, et al. Coexistence of Th1/Th2 and Th17/Treg imbalances in patients with post traumatic sepsis [J]. Cytokine, 2016, 88: 214-221.
|
4 |
Zhao L, Yu S, Wang L, et al. Blood suPAR, Th1 and Th17 cell may serve as potential biomarkers for elderly sepsis management [J]. Scand J Clin Lab Invest, 2021, 81(6): 488-493.
|
5 |
Liu B, Ren H, Chen J. LncRNA NEAT1 correlates with Th1 and Th17 and could serve as an assistant biomarker in sepsis [J]. Biomark Med, 2021, 15(13): 1177-1186.
|
6 |
Du K, Hao S, Luan H. Expression of peripheral blood DCs CD86, CD80, and Th1/Th2 in sepsis patients and their value on survival prediction [J]. Comput Math Methods Med, 2022, 2022: 4672535.
|
7 |
Ma N, Xing C, Xiao H, et al. C5a regulates IL-12+ DC migration to induce pathogenic Th1 and Th17 cells in sepsis [J]. PLoS One, 2013, 8(7): e69779.
|
8 |
Zhang S, Huang X, Xiu H, et al. The attenuation of Th1 and Th17 responses via autophagy protects against methicillin-resistant Staphylococcus aureus-induced sepsis [J]. Microbes Infect, 2021, 23(8): 104833.
|
9 |
Liu Y, Wang X, Yu L. Th17, rather than Th1 cell proportion, is closely correlated with elevated disease severity, higher inflammation level, and worse prognosis in sepsis patients [J]. J Clin Lab Anal, 2021, 35(5): e23753.
|
10 |
Xue M, Xie J, Liu L, et al. Early and dynamic alterations of Th2/Th1 in previously immunocompetent patients with community-acquired severe sepsis: a prospective observational study [J]. J Transl Med, 2019, 17(1): 57.
|
11 |
Bartsch P, Kilian C, Hellmig M, et al. Th17 cell plasticity towards a T-bet-dependent Th1 phenotype is required for bacterial control in Staphylococcus aureus infection [J]. PLoS Pathog, 2022, 18(4): e1010430.
|
12 |
黄伟. 《第三版脓毒症与感染性休克定义国际共识》解读 [J]. 中国实用内科杂志, 2016, 36(11): 959-962.
|
13 |
解立新, 肖坤. 免疫失衡是重症感染的核心问题之一 [J]. 中华结核和呼吸杂志, 2018, 41(9): 675-677.
|
14 |
Yao RQ, Li ZX, Wang LX, et al. Single-cell transcriptome profiling of the immune space-time landscape reveals dendritic cell regulatory program in polymicrobial sepsis [J]. Theranostics, 2022, 12(10): 4606-4628.
|
15 |
Burnett CE, Okholm TLH, Tenvooren I, et al. Mass cytometry reveals a conserved immune trajectory of recovery in hospitalized COVID-19 patients [J]. Immunity, 2022, 55(7): 1284-1298.e3.
|
16 |
Xia H, Wang F, Wang M, et al. Maresin1 ameliorates acute lung injury induced by sepsis through regulating Th17/Treg balance [J]. Life Sci, 2020, 254: 117773.
|
17 |
Nadeem A, Al-Harbi NO, Ahmad SF, et al. Blockade of interleukin-2-inducible T-cell kinase signaling attenuates acute lung injury in mice through adjustment of pulmonary Th17/Treg immune responses and reduction of oxidative stress [J]. Int Immunopharmacol, 2020, 83: 106369.
|
18 |
Sun JK, Zhang WH, Chen WX, et al. Effects of early enteral nutrition on Th17/Treg cells and IL-23/IL-17 in septic patients [J]. World J Gastroenterol, 2019, 25(22): 2799-2808.
|
19 |
Ahmad A, Vieira J de C, de Mello AH, et al. The PARP inhibitor olaparib exerts beneficial effects in mice subjected to cecal ligature and puncture and in cells subjected to oxidative stress without impairing DNA integrity: a potential opportunity for repurposing a clinically used oncological drug for the experimental therapy of sepsis [J]. Pharmacol Res, 2019, 145: 104263.
|
20 |
Yeh CL, Tanuseputero SA, Wu JM, et al. Intravenous Arginine administration benefits CD4+ T-Cell homeostasis and attenuates liver inflammation in mice with polymicrobial sepsis [J]. Nutrients, 2020, 12(4): E1047.
|
21 |
Huang Q, Wang Y, He F. Blood long non-coding RNA intersectin 1-2 is highly expressed and links with increased Th17 cells, inflammation, multiple organ dysfunction, and mortality risk in sepsis patients [J]. J Clin Lab Anal, 2022, 36(4): e24330.
|
22 |
Coakley JD, Breen EP, Moreno-Olivera A, et al. Dysregulated T helper type 1 (Th1) and Th17 responses in elderly hospitalised patients with infection and sepsis [J]. PLoS One, 2019, 14(10): e0224276.
|
23 |
Li G, Zhang L, Han N, et al. Increased Th17 and Th22 cell percentages predict acute lung injury in patients with sepsis [J]. Lung, 2020, 198(4): 687-693.
|
24 |
Ge Y, Huang M, Yao Y. Biology of interleukin-17 and its pathophysiological significance in sepsis [J]. Front Immunol, 2020, 11: 1558.
|
25 |
Wang L, Deng Z, Sun Y, et al. The study on the regulation of Th cells by mesenchymal stem cells through the JAK-STAT signaling pathway to protect naturally aged sepsis model Rats [J]. Front Immunol, 2022, 13: 820685.
|
26 |
Goldsmith CD, Donovan T, Vlahovich N, et al. Unlocking the role of exercise on CD4+ T cell plasticity [J]. Front Immunol, 2021, 12: 729366.
|
27 |
Rodriguez RM, Saiz ML, Suarez-Álvarez B, et al. Epigenetic networks driving T cell identity and plasticity during immunosenescence [J]. Trends Genet, 2022, 38(2): 120-123.
|
28 |
Yan J, Wang R, Horng T. mTOR is key to T cell transdifferentiation [J]. Cell Metab, 2019, 29(2): 241-242.
|
29 |
Tuzlak S, Dejean AS, Iannacone M, et al. Repositioning TH cell polarization from single cytokines to complex help [J]. Nat Immunol, 2021, 22(10): 1210-1217.
|
30 |
Haddadi NS, Mande P, Brodeur TY, et al. Th2 to Th1 transition is required for induction of skin lesions in an inducible and recurrent murine model of cutaneous lupus-like inflammation [J]. Front Immunol, 2022, 13: 883375.
|
31 |
Duddu AS, Majumdar SS, Sahoo S, et al. Emergent dynamics of a three-node regulatory network explain phenotypic switching and heterogeneity: a case study of Th1/Th2/Th17 cell differentiation [J]. Mol Biol Cell, 2022, 33(6): ar46.
|
32 |
Ma Q, Ran H, Li Y, et al. Circulating Th1/17 cells serve as a biomarker of disease severity and a target for early intervention in AChR-MG patients [J]. Clin Immunol, 2020, 218: 108492.
|
33 |
Cerboni S, Gehrmann U, Preite S, et al. Cytokine-regulated Th17 plasticity in human health and diseases [J]. Immunology, 2021, 163(1): 3-18.
|
34 |
Soukou S, Huber S, Krebs CF. T cell plasticity in renal autoimmune disease [J]. Cell Tissue Res, 2021, 385(2): 323-333.
|
35 |
Kraus EE, Kakuk-Atkins L, Farinas MF, et al. Regulation of autoreactive CD4 T cells by FoxO1 signaling in CNS autoimmunity [J]. J Neuroimmunol, 2021, 359: 577675.
|
36 |
Bittner-Eddy PD, Fischer LA, Costalonga M. Transient expression of IL-17A in Foxp3 fate-tracked cells in Porphyromonas gingivalis-mediated oral dysbiosis [J]. Front Immunol, 2020, 11: 677.
|
37 |
刘珺, 乔丽娟, 李积东, 等. Th1/17细胞功能及分化过程的生物信息学分析 [J]. 细胞与分子免疫学杂志, 2019, 35(9): 783-788.
|
38 |
Chen QH, Wu F, Liu L, et al. Mesenchymal stem cells regulate the Th17/Treg cell balance partly through hepatocyte growth factor in vitro [J]. Stem Cell Res Ther, 2020, 11(1): 91.
|
39 |
Wei Y, Luo QL, Sun J, et al. Bu-Shen-Yi-Qi formulae suppress chronic airway inflammation and regulate Th17/Treg imbalance in the murine ovalbumin asthma model [J]. J Ethnopharmacol, 2015, 164: 368-377.
|
40 |
Wang H, Xing H, Xia Y, et al. PLGA microspheres carrying miR-20a-5p improved intestinal epithelial barrier function in patients with Crohn's disease through STAT3-mediated inhibition of Th17 differentiation [J]. Int Immunopharmacol, 2022, 110: 109025.
|
41 |
Franchin M, Luiz Rosalen P, da Silva Prado D, et al. Cinnamoyloxy-mammeisin, a coumarin from propolis of stingless bees, attenuates Th17 cell differentiation and autoimmune inflammation via STAT3 inhibition [J]. Eur J Pharmacol, 2022, 929: 175127.
|
42 |
Chen Y, Song S, Wang Y, et al. Potential mechanism of oral baicalin treating psoriasis via suppressing Wnt signaling pathway and inhibiting Th17/IL-17 axis by activating PPARγ [J]. Phytother Res, 2022, Advance online publication.
|
43 |
Liu YJ, Xu WH, Fan LM, et al. Polydatin alleviates DSS- and TNBS-induced colitis by suppressing Th17 cell differentiation via directly inhibiting STAT3 [J]. Phytother Res, 2022, 36(9): 3662-3671.
|
44 |
Fan LM, Zhang YQ, Chen YP, et al. Cryptotanshinone ameliorates dextran sulfate sodium-induced murine acute and chronic ulcerative colitis via suppressing STAT3 activation and Th17 cell differentiation [J]. Int Immunopharmacol, 2022, 108: 108894.
|
45 |
Zhou HF, Wang FX, Sun F, et al. Aloperine Ameliorates IMQ-induced psoriasis by attenuating Th17 differentiation and facilitating their conversion to Treg [J]. Front Pharmacol, 2022, 13: 778755.
|
46 |
Chang Q, Yin D, Li H, et al. HDAC6-specific inhibitor alleviates hashimoto's thyroiditis through inhibition of Th17 cell differentiation [J]. Mol Immunol, 2022, 149: 39-47.
|
47 |
Yang J, Xu P, Han L, et al. Cutting edge: ubiquitin-specific protease 4 promotes Th17 cell function under inflammation by deubiquitinating and stabilizing RORγt [J]. J Immunol, 2015, 194(9): 4094-4097.
|
48 |
He Z, Wang F, Ma J, et al. Ubiquitination of RORγt at Lysine 446 limits Th17 differentiation by controlling coactivator recruitment [J]. J Immunol, 2016, 197(4): 1148-1158.
|
49 |
Han L, Yang J, Wang X, et al. The E3 deubiquitinase USP17 is a positive regulator of retinoic acid-related orphan nuclear receptor γt (RORγt) in Th17 cells [J]. J Biol Chem, 2014, 289(37): 25546-25555.
|
50 |
Lazarevic V, Chen X, Shim JH, et al. Transcription factor T-bet represses Th17 differentiation by preventing Runx1-mediated activation of the RORγt gene [J]. Nat Immunol, 2011, 12(1): 96.
|
51 |
Wilson V, Conlon FL. The T-box family [J]. Genome Biol, 2002, 3(6): 3008.1-3008.7.
|
52 |
Papaioannou VE. The T-box gene family: emerging roles in development, stem cells and cancer [J]. Development, 2014, 141(20): 3819-3833.
|
53 |
Sheikh AA, Groom JR. Transcription tipping points for T follicular helper cell and T-helper 1 cell fate commitment [J]. Cell Mol Immunol, 2021, 18(3): 528-538.
|
54 |
Huang C, Bi J. Expression regulation and function of T-bet in NK cells [J]. Front Immunol, 2021, 12: 761920.
|
55 |
Wang X, Rojas-Quintero J, Owen CA. To bet or not to bet on T-bet as a therapeutic target in emphysema? [J]. Am J Respir Cell Mol Biol, 2019, 61(4): 414-416.
|
56 |
Lazarevic V, Glimcher LH, Lord GM. T-bet: a bridge between innate and adaptive immunity [J]. Nat Rev Immunol, 2013, 13(11): 777-789.
|
57 |
Yang R, Weisshaar M, Mele F, et al. High Th2 cytokine levels and upper airway inflammation in human inherited T-bet deficiency [J]. J Exp Med, 2021, 218(8): e20202726.
|
58 |
Shimizu M, Kondo Y, Tanimura R, et al. T-bet represses collagen-induced arthritis by suppressing Th17 lineage commitment through inhibition of RORγt expression and function [J]. Sci Rep, 2021, 11(1): 17357.
|
59 |
Er JZ, Koean RAG, Ding JL. Loss of T‐bet confers survival advantage to influenza-bacterial superinfection [J]. The EMBO Journal, 2019, 38(1): e99176.
|
60 |
Hayashi S, Matsuno Y, Tsunoda Y, et al. Transcription factor T-bet attenuates the development of elastase-induced emphysema in mice [J]. Am J Respir Cell Mol Biol, 2019, 61(4): 525-536.
|
61 |
Hultgren OH, Verdrengh M, Tarkowski A. T-box transcription-factor-deficient mice display increased joint pathology and failure of infection control during staphylococcal arthritis [J]. Microbes Infect, 2004, 6(6): 529-535.
|
62 |
Xu J, Li J, Xiao K, et al. Dynamic changes in human HLA-DRA gene expression and Th cell subsets in sepsis: Indications of immunosuppression and associated outcomes [J]. Scand J Immunol, 2020, 91(1): e12813.
|
63 |
周宇翔, 黄鹏, 张丕红, 等. 烧伤脓毒症小鼠早期外周血T淋巴细胞中三种标志物的表达变化及免疫调控机制 [J]. 中华烧伤杂志, 2016, 32(2): 89-96.
|
64 |
Bai G, Wang H, Han W, et al. T-Bet Expression Mediated by the mTOR Pathway Influences CD4+ T Cell Count in Mice With Lethal Candida Sepsis [J]. Front Microbiol, 2020, 11: 835.
|
65 |
Greenberg JA, Hrusch CL, Jaffery MR, et al. Distinct T-helper cell responses to Staphylococcus aureus bacteremia reflect immunologic comorbidities and correlate with mortality [J]. Crit Care, 2018, 22(1): 107.
|