切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2016, Vol. 02 ›› Issue (04) : 247 -253. doi: 10.3877/cma.j.issn.2096-1537.2016.04.005

所属专题: 重症医学 文献

专家论坛

急性呼吸窘迫综合征:未来是否还需要机械通气?
李旭1, 马晓春1,()   
  1. 1. 110001 沈阳,中国医科大学附属第一医院重症医学科
  • 收稿日期:2016-11-09 出版日期:2016-11-28
  • 通信作者: 马晓春

Do we need mechanical ventilation to treat acute respiratory distress syndrom in the future?

Xu Li1, Xiaochun Ma1,()   

  1. 1. Department of Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
  • Received:2016-11-09 Published:2016-11-28
  • Corresponding author: Xiaochun Ma
  • About author:
    Corresponding author: Ma Xiaochun, Email:
引用本文:

李旭, 马晓春. 急性呼吸窘迫综合征:未来是否还需要机械通气?[J]. 中华重症医学电子杂志, 2016, 02(04): 247-253.

Xu Li, Xiaochun Ma. Do we need mechanical ventilation to treat acute respiratory distress syndrom in the future?[J]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2016, 02(04): 247-253.

急性呼吸窘迫综合征(acute respiratory distress syndrom,ARDS)是急性呼吸衰竭最严重的形式,机械通气是ARDS患者的基础治疗,主要作用是改善氧合和清除二氧化碳,并为重症患者其他器官功能支持和机体恢复提供保障。然而,随着有创机械通气的应用,人们逐渐意识到它对患者可能产生副损伤,尤其是呼吸机相关性肺损伤。基于此,人们致力于探索ARDS患者有创机械通气的替代手段,如无创通气、高流量鼻导管氧疗、体外膜肺氧合、体外二氧化碳清除及一些药物治疗手段。由于ARDS患者基础条件和病变的异质性,在某类ARDS患者或在ARDS的某个阶段,非有创机械通气的治疗模式也能满足患者的需求,但在多数ARDS患者有创机械通气仍是不可替代的。

Acute respiratory distress syndrome (ARDS) is one of the most severe type of acute respiratory failure. Mechanical ventilation (MV) is the cornerstone therapy for ARDS patients, for its important effects on improving oxygenation and carbon dioxide (CO2) excretion, and also for its supporting effects for other organs in critically ill patients. However, with invasive MV being widely applied, its potential harm was also recognized, especially for ventilator-induced lung injury (VILI). In the past few years, there has been a consistent effort to develop alternative strategies to completely avoid the need for invasive MV. In particular, several studies have explored the feasibility and efficacy of non-invasive MV、high flow nasal cannula oxygen therapy、extracorporeal oxygenation、carbon dioxide removal and some pharmacological therapies and so on. As ARDS is a heterogeneous disease , therapeutic methods instead of invasive MV might be effective for some patients in some clinical sinario during some stage of ARDS. But still, invasive MV remains the mainstay of care for most of the patients with ARDS.

[1]
The Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome network[J]. N Engl J Med, 2000, 342(18): 1301-1308.
[2]
Briel M, Meade M, Mercat A, et al. Higher vs lower positive end-expiratory pressure in patients with acute lung injury and acute respiratory distress syndrome: systematic review and meta-analysis[J]. JAMA, 2010, 303(9): 865-873.
[3]
Guérin C, Reignier J, Richard JC, et al. PROSEVA Study Group. Prone positioning in severe acute respiratory distress syndrome[J]. N Engl J Med, 2013, 368(23): 2159-2168.
[4]
Bellani G, Laffey JG, Pham T, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries[J]. JAMA, 2016, 315(8): 788-800.
[5]
Stapleton RD, Wang BM, Hudson LD, et al. Causes and timing of death in patients with ARDS[J]. Chest, 2005, 128(2): 525-532.
[6]
Ferguson ND, Frutos-Vivar F, Esteban A, et al. Acute respiratory distress syndrome: underrecognition by clinicians and diagnostic accuracy of three clinical definitions[J]. Crit Care Med, 2005, 33(10): 2228-2234.
[7]
Ferguson ND, Fan E, Camporota L, et al. The Berlin definition of ARDS: an expanded rationale, justification, and supplementary material[J]. Intensive Care Med, 2012, 38(10): 1573-1582.
[8]
Frohlich S, Murphy N, Boylan J. Definition of acute respiratory distress syndrome[J]. JAMA, 2012, 308(13): 1321-1322.
[9]
Bersten AD, Edibam C, Hunt T, et al. Incidence and mortality of acute lung injury and the acute respiratory distress syndrome in three Australian States[J]. Am J Respir Crit Care Med, 2002, 165(4): 443-448.
[10]
Villar J, Blanco J, Anon JM, et al. The ALIEN study: incidence and outcome of acute respiratory distress syndrome in the era of lung protective ventilation[J]. Intensive Care Med, 2011, 37(12): 1932-1941.
[11]
Erickson SE, Martin GS, Davis JL, et al. Recent trends in acute lung injury mortality: 1996-2005[J]. Crit Care Med, 2009, 37(5): 1574-1579.
[12]
Tremblay LN, Slutsky AS. Ventilator-induced lung injury: from the bench to the bedside[J]. Intensive Care Med, 2006, 32(8): 24-33.
[13]
Terragni PP, Rosboch G, Tealdi A, et al. Tidal hyperinflation during low tidal volume ventilation in acute respiratory distress syndrome[J]. Am J Respir Crit Care Med, 2007, 175(2): 160-166.
[14]
Hager DN, Krishnan JA, Hayden DL, et al. ARDS clinical trials network: Tidal volume reduction in patients with acute lung injury when plateau pressures are not high[J]. Am J Respir Crit Care Med, 2005, 173(6): 1241-1245.
[15]
Melsen WG, Rovers MM, Bonten MJ. Ventilator-associated pneumonia and mortality: a systematic review of observational studies[J]. Crit Care Med, 2009, 37(10): 2709-2718.
[16]
Levine S, Nguyen T, Taylor N, et al. Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans[J]. N Engl J Med, 2008, 358(13): 1327-1335.
[17]
Bouhemad B, Nicolas-Robin A, Arbelot C, et al. Acute left ventricular dilatation and shock-induced myocardial dysfunction[J]. Crit Care Med, 2009, 37(2): 441-447.
[18]
Antonelli M, Conti G, Esquinas A, et al. A multiple-center survey on the use in clinical practice of noninvasive ventilation as a first-line intervention for acute respiratory distress syndrome[J]. Crit Care Med, 2007, 35(1): 18-25.
[19]
Thille AW, Contou D, Fragnoli C, et al. Non-invasive ventilation for acute hypoxemic respiratory failure: intubation rate and risk factors[J]. Crit Care, 2013, 17(6): R269.
[20]
Patel BK, Wolfe KS, Pohlman AS, et al. Effect of noninvasive ventilation delivered by helmet vs face mask on the rate of endotracheal intubation in patients with acute respiratory distress syndrome: a randomized clinical trial[J]. JAMA, 2016, 315(22): 2435-2441.
[21]
Nava S, Hill N. Non-invasive ventilation in acute respiratory failure[J]. Lancet, 2009, 374(9685): 250-259.
[22]
Reske AW, Costa EL, Reske AP, et al. Bedside estimation of nonaerated lung tissue using blood gas analysis[J]. Crit Care Med, 2013, 41(3): 732-743.
[23]
Rana S, Jenad H, Gay PC, et al. Failure of noninvasive ventilation in patients with acute lung injury: observational cohort study[J]. Crit Care, 2006, 10(3): R79.
[24]
Lee JH, Rehder KJ, Williford L, et al. Use of high flow nasal cannula in critically ill infants, children, and adults: a critical review of the literature[J]. Intensive Care Med, 2013, 39(2): 247-257.
[25]
Messika J, Ben Ahmed K, Gaudry S, et al. Use of high-flow nasal cannula oxygen therapy in subjects with ARDS: a 1-year observational study[J]. Respir Care, 2015, 60(2): 162-169.
[26]
Frat JP, Brugiere B, Ragot S, et al. Sequential application of oxygen therapy via high-flow nasal cannula and noninvasive ventilation in acute respiratory failure: an observational pilot study[J]. Respir Care, 2015, 60(2): 170-178.
[27]
Frat JP, Thille AW, Mercat A, et al. High-flow oxygen through nasal cannula in acute hypoxemic respiratory failure[J]. N Engl J Med, 2015, 372(23): 2185-2196.
[28]
Schwabbauer N, Berg B, Blumenstock G, et al. Nasal high-flow oxygen therapy in patients with hypoxic respiratory failure: effect on functional and subjective respiratory parameters compared to conventional oxygen therapy and non-invasive ventilation (NIV)[J]. BMC Anesthesiol, 2014, 14: 66.
[29]
Meade MO, Cook DJ, Guyatt GH, et al. Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome: a randomized controlled trial[J]. JAMA, 2008, 299(6): 637-645.
[30]
Burns KE, Adhikari NK, Slutsky AS, et al. Pressure and volume limited ventilation for the ventilatory management of patients with acute lung injury: a systematic review and meta-analysis[J]. PLoS One, 2011, 6(1): e14623.
[31]
Needham DM, Colantuoni E, Mendez-Tellez PA, et al. Lung protective mechanical ventilation and two year survival in patients with acute lung injury: prospective cohort study[J]. BMJ, 2012, 344: e2124.
[32]
Petrucci N, Iacovelli W. Lung protective ventilation strategy for the acute respiratory distress syndrome[J]. Cochrane Database Syst Rev, 2007, 18(3): CD003844.
[33]
Gattinoni L, Caironi P, Cressoni M, et al. Lung recruitment in patients with the acute respiratory distress syndrome[J]. N Engl J Med, 2006, 354(17): 1775-1786.
[34]
Mercat A, Richard JCM, Vielle B, et al. Positive end-expiratory pressure setting in adults with acute lung injury and acute respiratory distress syndrome: a randomized controlled trial[J]. JAMA, 2008, 299(6): 646-655.
[35]
Brower RG, Lanken PN, MacIntyre N, et al. Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome[J]. N Engl J Med, 2004, 351: 327-336.
[36]
Gattinoni L, Caironi P. Refining ventilatory treatment for acute lung injury and acute respiratory distress syndrome[J]. JAMA, 2008, 299(6): 691-693.
[37]
Amato MB, Meade MO, Slutsky AS, et al. Driving pressure and survival in the acute respiratory distress syndrome[J]. N Engl J Med, 2015, 372(8): 747-755.
[38]
Terragni PP, Filippini C, Slutsky AS, et al. Accuracy of plateau pressure and stress index to identify injurious ventilation in patients with acute respiratory distress syndrome[J]. Anesthesiology, 2013, 119(4): 880-889.
[39]
Caironi P, Cressoni M, Chiumello D, et al. Lung opening and closing during ventilation of acute respiratory distress syndrome[J]. Am J Respir Crit Care Med, 2010, 181(6): 578-586.
[40]
Chiumello D, Cressoni M, Carlesso E, et al. Bedside selection of positive end-expiratory pressure in mild, moderate, and severe acute respiratory distress syndrome[J]. Crit Care Med, 2014, 42(2): 252-264.
[41]
Chiumello D, Brioni M. Severe hypoxemia: which strategy to choose[J]. Crit Care, 2016, 20(1): 132.
[42]
Adhikari NK, Bashir A, Lamontagne F, et al. High frequency oscillation in adults: a utilization review[J]. Crit Care Med, 2011, 39(12): 2631-2644.
[43]
Sud S, Sud M, Friedrich JO, Meade MO, et al. High frequency oscillation in patients with acute lung injury and acute respiratory distress syndrome (ARDS): systematic review and meta-analysis[J]. BMJ, 2010, 340: c2327.
[44]
Ferguson ND, Cook DJ, Guyatt GH, et al. High frequency oscillation in early acute respiratory distress syndrome[J]. N Engl J Med, 2013, 368(9): 795-805.
[45]
Young D, Lamb SE, Shah S, et al. High-frequency oscillation for acute respiratory distress syndrome[J]. N Engl J Med, 2013, 368(9): 806-813.
[46]
Ventetuolo CE, Muratore CS. Extracorporeal life support in critically ill adults[J]. Am J Respir Crit Care Med, 2014, 190(5): 497-508.
[47]
Peek GJ, Mugford M, Tiruvoipati R, et al. Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): a multicentre randomised controlled trial[J]. Lancet, 2009, 374(9698): 1351-1363.
[48]
Frenckner B, Palmér P, Lindén V. Extracorporeal respiratory support and minimally invasive ventilation in severe ARDS[J]. Minerva Anestesiol, 2002, 68(5): 381-386.
[49]
Luyt CE, Combes A, Becquemin MH, et al. Long-term outcomes of pandemic 2009 influenza A (H1N1)-associated severe ARDS[J]. Chest, 2012, 142(3): 583-592.
[50]
Sorbo LD, Cypel M, Fan E. Extracorporeal life support for adults with severe acute respiratory failure[J]. Lancet Respir Med, 2014, 2(2): 154-164.
[51]
Bein T, Weber-Carstens S, Goldmann A, et al. Lower tidal volume strategy (≈3 ml/kg) combined with extracorporeal CO2 removal versus ʹconventionalʹ protective ventilation (6 ml/kg) in severe ARDS: the prospective randomized Xtravent-study[J]. Intensive Care Med, 2013, 39(5): 847-856.
[52]
Sud S, Friedrich JO, Taccone P, et al. Prone ventilation reduces mortality in patients with acute respiratory failure and severe hypoxemia: systematic review and meta-analysis[J]. Intensive Care Med, 2010, 36(10): 585-599.
[53]
Kopterides P, Siempos II, Armaganidis A. Prone positioning in hypoxemic respiratory failure: meta analysis of randomized controlled trials[J]. J Crit Care, 2009, 24(1): 89-100.
[54]
Beitler JR, Shaefi S, Montesi SB, et al. Prone positioning reduces mortality from acute respiratory distress syndrome in the low tidal volume era: a meta-analysis[J]. Intensive Care Med, 2014, 40(3): 332-341.
[55]
Sud S, Friedrich JO, Adhikari NK, et al. Effect of prone positioning during mechanical ventilation on mortality among patients with acute respiratory distress syndrome: asystematic review and meta-analysis[J]. CMAJ, 2014, 186(10): E381-390.
[56]
Kimmoun A, Roche S, Bridey C, et al. Prolonged prone positioning under VV-ECMO is safe and improves oxygenation and respiratory compliance[J]. Ann Int Care, 2015, 5(1): 35.
[57]
Gattinoni L, Taccone P, Carlesso E, et al. Prone position in acute respiratory distress syndrome. Rationale, indications, and limits[J]. Am J Respir Crit Care Med, 2013, 188(11): 1286-1293.
[58]
Girard R, Baboi L, Ayzac L, et al. The impact of patient positioning on pressure ulcers in patients with severe ARDS: results from a multicentre randomised controlled trial on prone positioning[J]. Intensive Care Med, 2014, 40(3): 397-403.
[59]
Papazian L, Forel JM, Gacouin A, et al. Neuromuscular blockers in early acute respiratory distress syndrome[J]. N Engl J Med, 2010, 363(12): 1107-1116.
[60]
Slutsky AS. Neuromuscular blocking agents in ARDS[J]. N Engl J Med, 2010, 363(12): 1176-1180.
[61]
Imai Y, Kuba K, Neely GG, et al. Identification of oxidative stress and Toll-like receptor 4 signaling as a key pathway of acute lung injury[J]. Cell, 2008, 133(2): 235-249.
[62]
Liu S, Feng G, Wang GL, et al. p38MAPK inhibition attenuates LPS-induced acute lung injury involvement of NF-kappa B pathway[J]. Eur J Pharmacol, 2008, 584(1): 159-165.
[63]
Gupta N, Su X, Popov B, et al. Intrapulmonary delivery of bone marrow-derived mesenchymal stem cells improves survival and attenuates endotoxin-induced acute lung injury in mice[J]. J Immunol, 2007, 179(3): 1855-1863.
[64]
Matthay MA, Ware LB, Zimmerman GA. The acute respiratory distress syndrome[J]. J Clin Invest, 2012, 122(8): 2731-2740.
[65]
McCarter SD, Mei SH, Lai PF, et al. Cell-based angiopoietin-1 gene therapy for acute lung injury[J]. Am J Respir Crit Care Med, 2007, 175(10): 1014-1026.
[1] 徐娟, 孙汝贤, 赵东亚, 张清艳, 金兆辰, 蔡燕. 右美托咪定序贯镇静模式对中深度镇静的机械通气患者预后和谵妄的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 363-369.
[2] 豆艺璇, 黄怀, 钱绮雯, 邢然然, 林丽, 白建芳. 低强度吸气肌训练对机械通气患者肺康复的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 370-375.
[3] 许振琦, 易伟, 范闻轩, 王金锋. 经鼻高流量氧疗与无创机械通气在严重创伤术后轻中度低氧血症患者中的临床应用[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 306-309.
[4] 钱晓英, 吴新, 徐婷婷. 颅脑损伤并发呼吸衰竭患者早期机械通气的效果分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 526-528.
[5] 代芬, 卞士柱. 无创机械通气联合肺康复在肺动脉高压呼吸衰竭治疗中的临床应用[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 560-562.
[6] 程传丽, 曾慧, 周静, 孙凌霞, 吴敏, 钱明江, 陈武, 万洁, 周仁佳. 超声引导下胸肺物理治疗对机械通气患者膈肌功能的疗效分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 563-565.
[7] 饶林静, 罗皓梨, 钟山. 不同时长PPV在体外循环心脏大血管术后并发ARDS中的临床应用[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 575-577.
[8] 罗婷, 张实. 5种生物标志物对ARDS预后的预测分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 471-475.
[9] 李伟, 卓剑, 黄川, 黄有攀. Lac、HO-1、sRAGE、CRP/ALB表达及脓毒症并发ARDS危险因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 514-516.
[10] 徐欣轶, 薛蓓, 蒋莉, 陈慧. NRI联合CFS评分对肺癌术后机械通气的预测分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 358-360.
[11] 张松涛, 李世金, 凌霄, 吴文辉. 胸部物理治疗联合布地奈德雾化对多发伤患者并发ARDS的临床分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 373-375.
[12] 胡宗俊, 陈建国, 黄霞. ARDS机械通气继发肺栓塞危险因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 388-390.
[13] 林金锋, 张素燕, 田李均, 曹志龙, 徐俊贤, 韩旭东. 短暂呼气末阻塞法用于指导机械通气患者撤机的临床分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 266-268.
[14] 谭林, 蒲运刚, 朱顺, 杨希. 急性呼吸窘迫综合征患者血清FGF21、ANGPTL4、HO-1表达及其临床意义[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 227-229.
[15] 陈蕊, 杨洪娜, 方巍, 李鑫鑫, 李甜甜, 于孝义, 王艳雪, 李文玉. 血清与支气管肺泡灌洗液中细胞因子水平与肺内外ARDS的相关性研究[J]. 中华重症医学电子杂志, 2023, 09(03): 251-258.
阅读次数
全文


摘要