切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2020, Vol. 06 ›› Issue (04) : 448 -452. doi: 10.3877/cma.j.issn.2096-1537.2020.04.016

所属专题: 文献

综述

脓毒症获得性T细胞免疫功能障碍与治疗的研究进展
孙旖旎1, 马晓春1,()   
  1. 1. 110001 沈阳,中国医科大学附属第一医院重症医学科
  • 收稿日期:2020-04-10 出版日期:2020-11-28
  • 通信作者: 马晓春

Research update on T cell immune dysfunction in sepsis and related treatments

Yini Sun1, Xiaochun Ma1,()   

  1. 1. Department of Critical Care Medicine, the First Affiliated Hospital of China Medical University, Shenyang 110000, China
  • Received:2020-04-10 Published:2020-11-28
  • Corresponding author: Xiaochun Ma
  • About author:
    Corresponding author: Ma Xiaochun, Email:
引用本文:

孙旖旎, 马晓春. 脓毒症获得性T细胞免疫功能障碍与治疗的研究进展[J/OL]. 中华重症医学电子杂志, 2020, 06(04): 448-452.

Yini Sun, Xiaochun Ma. Research update on T cell immune dysfunction in sepsis and related treatments[J/OL]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2020, 06(04): 448-452.

免疫功能障碍是脓毒症迁延不愈,病死率高的重要原因之一。发生脓毒症时固有免疫与获得性免疫系统均发生改变,但以T细胞为主的获得性免疫系统在脓毒症晚期发挥关键性作用。T细胞凋亡,耗竭及功能下降均可造成免疫抑制状态,引起脓毒症死亡风险增高。本综述以脓毒症早期与晚期免疫状态的比较为切入点,深入阐述导致脓毒症获得性免疫功能障碍的病理生理学机制,包括T细胞凋亡,T细胞耗竭及调节性T细胞功能障碍等。介绍目前针对T细胞免疫调节治疗的新进展,以期深入理解脓毒症免疫功能障碍的机制,并寻求免疫治疗的新靶点。

Immune dysfunction contributes to the development of sepsis and the high mortality of sepsis. Both innate and adaptive immune system has changed during sepsis. Nonetheless, the adaptive immune dysfunction induced by T cells plays a crucial role in the late phase of sepsis. The apoptosis, exhaustion and malfunction of T cells contributes to immune-suppressive status, which leads to high risk for death from sepsis. The review focuses on the immune status and function in the early and late phase of sepsis and states the pathophysiological mechanism of adaptive immune dysfunction in sepsis, including T cell apoptosis, T cell exhaustion and dysfunction of regulatory T cells. Further, it introduces the up-to-date T cells immune therapeutics to better understand the immune dysfunction mechanism during the development of sepsis and to pursue the new target of immune therapy.

1
Singer M, Deutschman CS, Seymour CW, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) [J]. JAMA, 2016, 315(8): 801-810.
2
Seymour CW, Kennedy JN, Wang S, et al. Derivation, validation, and potential treatment implications of novel clinical phenotypes for sepsis [J]. JAMA, 2019, 321(20): 2003-2017.
3
Kahn JM, Le T, Angus DC, et al. The epidemiology of chronic critical illness in the United States [J]. Crit Care Med, 2015, 43(2): 282-287.
4
Opal SM. Immunologic alterations and the pathogenesis of organ failure in the ICU [J]. Semin Respir Crit Care Med, 2011, 32(5): 569-580.
5
Cohen J, Opal S, Calandra T. Sepsis studies need new direction [J]. Lancet Infect Dis, 2012, 12(7): 503-505.
6
Angus DC. The search for effective therapy for sepsis: back to the drawing board? [J]. JAMA, 2011, 306(23): 2614-2615.
7
Bone RC, Grodzin CJ, Balk RA. Sepsis: a new hypothesis for pathogenesis of the disease process [J]. Chest, 1997, 112(1): 235-243.
8
Boomer JS, To K, Chang KC, et al. Immunosuppression in patients who die of sepsis and multiple organ failure [J]. JAMA, 2011, 306(23): 2594-2605.
9
Delano MJ, Ward PA. Sepsis-induced immune dysfunction: can immune therapies reduce mortality? [J]. J Clin Invest, 2016, 126(1): 23-31.
10
Wang H, Zhu S, Zhou R, et al. Therapeutic potential of HMGB1-targeting agents in sepsis [J]. Expert Rev Mol Med, 2008, 10: e32.
11
Boomer JS, Green JM, Hotchkiss RS. The changing immune system in sepsis: is individualized immuno-modulatory therapy the answer? [J]. Virulence, 2014, 5(1): 45-56.
12
Beura LK, Hamilton SE, Bi K, et al. Normalizing the environment recapitulates adult human immune traits in laboratory mice [J]. Nature, 2016, 532(7600): 512-516.
13
Xie J, Chen CW, Sun Y, et al. Increased attrition of memory T cells during sepsis requires 2B4 [J]. JCI Insight, 2019, 4(9): e126030.
14
Mosser DM, Zhang X. Interleukin-10: new perspectives on an old cytokine [J]. Immunol Rev, 2008, 226: 205-218.
15
Tatura R, Zeschnigk M, Hansen W, et al. Relevance of Foxp3+ regulatory T cells for early and late phases of murine sepsis [J]. Immunology, 2015, 146(1): 144-156.
16
Boomer JS, Shuherk-Shaffer J, Hotchkiss RS, et al. A prospective analysis of lymphocyte phenotype and function over the course of acute sepsis [J]. Crit Care, 2012, 16(3): R112.
17
Felmet KA, Hall MW, Clark RS, et al. Prolonged lymphopenia, lymphoid depletion, and hypoprolactinemia in children with nosocomial sepsis and multiple organ failure [J]. J Immunol, 2005, 174(6): 3765-3772.
18
Toti P, De Felice C, Occhini R, et al. Spleen depletion in neonatal sepsis and chorioamnionitis [J]. AMER J Clin Pathol, 2004, 122(5): 765-771.
19
Chang KC, Unsinger J, Davis CG, et al. Multiple triggers of cell death in sepsis: death receptor and mitochondrial-mediated apoptosis [J]. FASEB J, 2007, 21(3): 708-719.
20
Leng FY, Liu JL, Liu ZJ, et al. Increased proportion of CD4+ CD25+ Foxp3+ regulatory T cells during early-stage sepsis in ICU patients [J]. J Microbiol Immunol Infect, 2013, 46(5): 338-344.
21
Venet F, Chung CS, Kherouf H, et al. Increased circulating regulatory T cells (CD4+ CD25+ CD127-) contribute to lymphocyte anergy in septic shock patients [J]. Intensive Care Med, 2009, 35(4): 678-686.
22
Venet F, Chung CS, Monneret G, et al. Regulatory T cell populations in sepsis and trauma [J]. J Leukoc Biol, 2008, 83(3): 523-535.
23
Delano MJ, Scumpia PO, Weinstein JS, et al. MyD88-dependent expansion of an immature GR-1+CD11b+ population induces T cell suppression and Th2 polarization in sepsis [J]. J Exp Med, 2007, 204(6): 1463-1474.
24
Barnstorf I, Borsa M, Baumann N, et al. Chronic virus infection compromises memory bystander T cell function in an IL-6/STAT1-dependent manner [J]. J Exp Med, 2019, 216(3): 571-586.
25
Regis G, Icardi L, Conti L, et al. IL-6, but not IFN-gamma, triggers apoptosis and inhibits in vivo growth of human malignant T cells on STAT3 silencing [J]. Leukemia, 2009, 23(11): 2102-2108.
26
Jimbo A, Fujita E, Kouroku Y, et al. ER stress induces caspase-8 activation, stimulating cytochrome c release and caspase-9 activation [J]. Exp Cell Res, 2003, 283(2): 156-166.
27
Yi JS, Cox MA, Zajac AJ. T-cell exhaustion: characteristics, causes and conversion [J]. Immunology, 2010, 129(4): 474-481.
28
Hein F, Massin F, Cravoisy-Popovic A, et al. The relationship between CD4+CD25+CD127- regulatory T cells and inflammatory response and outcome during shock states [J]. Crit Care, 2010, 14(1): R19.
29
Scumpia PO, Delano MJ, Kelly KM, et al. Increased natural CD4+CD25+ regulatory T cells and their suppressor activity do not contribute to mortality in murine polymicrobial sepsis [J]. J Immunol, 2006, 177(11): 7943-7949.
30
Kuhlhorn F, Rath M, Schmoeckel K, et al. Foxp3+ regulatory T cells are required for recovery from severe sepsis [J]. PLoS One, 2013, 8(5): e65109.
31
Angus DC, van der Poll T. Severe sepsis and septic shock [J]. N Engl J Med, 2013, 369(9): 840-851.
32
Efron PA, Mohr AM, Moore FA, et al. The future of murine sepsis and trauma research models [J]. J Leukoc Biol, 2015, 98(6): 945-952.
33
Lewis AJ, Rosengart MR. Bench-to-bedside: a translational perspective on murine models of sepsis [J]. Surg Infect (Larchmt), 2018, 19(2): 137-141.
34
Hotchkiss RS, Moldawer LL. Parallels between cancer and infectious disease [J]. N Engl J Med, 2014, 371(4): 380-383.
35
Brahmamdam P, Inoue S, Unsinger J, et al. Delayed administration of anti-PD-1 antibody reverses immune dysfunction and improves survival during sepsis [J]. J Leukoc Biol, 2010, 88(2): 233-240.
36
Patera AC, Drewry AM, Chang K, et al. Frontline science: defects in immune function in patients with sepsis are associated with PD-1 or PD-L1 expression and can be restored by antibodies targeting PD-1 or PD-L1 [J]. J Leukoc Biol, 2016, 100(6): 1239-1254.
37
Chang KC, Burnham CA, Compton SM, et al. Blockade of the negative co-stimulatory molecules PD-1 and CTLA-4 improves survival in primary and secondary fungal sepsis [J]. Crit Care, 2013, 17(3): R85.
38
Nalos M, Santner-Nanan B, Parnell G, et al. Immune effects of inter-feron gamma in persistent staphylococcal sepsis [J]. Am J Respir Crit Care Med, 2012, 185(1): 110-112.
39
Perales MA, Goldberg JD, Yuan J, et al. Recombinant human interleukin-7 (CYT107) promotes T-cell recovery after allogeneic stem cell transplantation [J]. Blood, 2012, 120(24): 4882-4891.
40
Unsinger J, McGlynn M, Kasten KR, et al. IL-7 promotes T cell viability, trafficking, and functionality and improves survival in sepsis [J]. J Immunol, 2010, 184(7): 3768-3779.
41
Wesche-Soldato DE, Swan RZ, Chung CS, et al. The apoptotic pathway as a therapeutic target in sepsis [J]. Curr Drug Targets, 2007, 8(4): 493-500.
[1] 庄燕, 戴林峰, 张海东, 陈秋华, 聂清芳. 脓毒症患者早期生存影响因素及Cox 风险预测模型构建[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(05): 372-378.
[2] 杨瑾, 刘雪克, 张媛媛, 金钧, 韦瑶. 肠道微生物来源石胆酸对脓毒症相关肝损伤的保护作用[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 265-274.
[3] 张霞, 张瑞, 郑志波, 张勤. 紫草素调控乳酸化修饰和线粒体功能改善脓毒症心肌病小鼠的预后[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 275-284.
[4] 张婧琦, 江洋, 孙佳璐, 唐兴喆, 赵宇飞, 崔颖, 李信响, 戴景月, 傅琳, 彭新桂. 基于肾周CT特征结合血清肌酐水平探讨脓毒症伴急性肾损伤的早期识别[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 285-292.
[5] 李振翮, 魏长青, 甄国栋, 李振富. 脓毒症并发急性呼吸窘迫综合征患者血清S1P、Wnt5a变化及其临床意义[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 293-300.
[6] 成人脓毒症患者β-内酰胺类抗生素延长输注专家共识编写组. 成人脓毒症患者β-内酰胺类抗生素延长输注专家共识[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 313-324.
[7] 陈曦, 吴宗盛, 郑明珠, 邱海波. 胸腺萎缩在脓毒症免疫紊乱中的研究进展[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 379-383.
[8] 杨翔, 郭兰骐, 谢剑锋, 邱海波. 转录组学在脓毒症诊疗中的临床研究进展[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 384-388.
[9] 胡梓菡, 彭菲, 孙骎, 杨毅. 细胞外囊泡在脓毒症血管内皮损伤作用中的研究进展[J/OL]. 中华重症医学电子杂志, 2024, 10(03): 265-270.
[10] 刘娟丽, 马四清, 乌仁塔娜. 髓源性抑制细胞在脓毒症中的研究进展[J/OL]. 中华重症医学电子杂志, 2024, 10(03): 271-278.
[11] 苏生林, 马金兰, 于弘明, 杨晓军. 单细胞测序技术在脓毒症免疫研究中的应用进展[J/OL]. 中华重症医学电子杂志, 2024, 10(03): 279-286.
[12] 陈惠英, 邱敏珊, 邵汉权. 脓毒症诱发肠黏膜屏障功能损伤的风险因素模型构建与应用效果[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 448-452.
[13] 傅新露, 李之岳, 卢丹. 妊娠合并结肠癌穿孔致脓毒症休克一例并文献复习[J/OL]. 中华产科急救电子杂志, 2024, 13(04): 227-231.
[14] 孙冠超, 万军, 石卉. IgG相关食物不耐受与肠道免疫微环境相关性的研究进展[J/OL]. 中华胃肠内镜电子杂志, 2024, 11(03): 200-203.
[15] 席静妮, 李娜, 张琪. 中性粒细胞与淋巴细胞比值对老年重症社区获得性肺炎进展为脓毒症的预测价值[J/OL]. 中华老年病研究电子杂志, 2024, 11(03): 28-31.
阅读次数
全文


摘要