切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2020, Vol. 06 ›› Issue (04) : 448 -452. doi: 10.3877/cma.j.issn.2096-1537.2020.04.016

所属专题: 文献

综述

脓毒症获得性T细胞免疫功能障碍与治疗的研究进展
孙旖旎1, 马晓春1,()   
  1. 1. 110001 沈阳,中国医科大学附属第一医院重症医学科
  • 收稿日期:2020-04-10 出版日期:2020-11-28
  • 通信作者: 马晓春

Research update on T cell immune dysfunction in sepsis and related treatments

Yini Sun1, Xiaochun Ma1,()   

  1. 1. Department of Critical Care Medicine, the First Affiliated Hospital of China Medical University, Shenyang 110000, China
  • Received:2020-04-10 Published:2020-11-28
  • Corresponding author: Xiaochun Ma
  • About author:
    Corresponding author: Ma Xiaochun, Email:
引用本文:

孙旖旎, 马晓春. 脓毒症获得性T细胞免疫功能障碍与治疗的研究进展[J]. 中华重症医学电子杂志, 2020, 06(04): 448-452.

Yini Sun, Xiaochun Ma. Research update on T cell immune dysfunction in sepsis and related treatments[J]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2020, 06(04): 448-452.

免疫功能障碍是脓毒症迁延不愈,病死率高的重要原因之一。发生脓毒症时固有免疫与获得性免疫系统均发生改变,但以T细胞为主的获得性免疫系统在脓毒症晚期发挥关键性作用。T细胞凋亡,耗竭及功能下降均可造成免疫抑制状态,引起脓毒症死亡风险增高。本综述以脓毒症早期与晚期免疫状态的比较为切入点,深入阐述导致脓毒症获得性免疫功能障碍的病理生理学机制,包括T细胞凋亡,T细胞耗竭及调节性T细胞功能障碍等。介绍目前针对T细胞免疫调节治疗的新进展,以期深入理解脓毒症免疫功能障碍的机制,并寻求免疫治疗的新靶点。

Immune dysfunction contributes to the development of sepsis and the high mortality of sepsis. Both innate and adaptive immune system has changed during sepsis. Nonetheless, the adaptive immune dysfunction induced by T cells plays a crucial role in the late phase of sepsis. The apoptosis, exhaustion and malfunction of T cells contributes to immune-suppressive status, which leads to high risk for death from sepsis. The review focuses on the immune status and function in the early and late phase of sepsis and states the pathophysiological mechanism of adaptive immune dysfunction in sepsis, including T cell apoptosis, T cell exhaustion and dysfunction of regulatory T cells. Further, it introduces the up-to-date T cells immune therapeutics to better understand the immune dysfunction mechanism during the development of sepsis and to pursue the new target of immune therapy.

1
Singer M, Deutschman CS, Seymour CW, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) [J]. JAMA, 2016, 315(8): 801-810.
2
Seymour CW, Kennedy JN, Wang S, et al. Derivation, validation, and potential treatment implications of novel clinical phenotypes for sepsis [J]. JAMA, 2019, 321(20): 2003-2017.
3
Kahn JM, Le T, Angus DC, et al. The epidemiology of chronic critical illness in the United States [J]. Crit Care Med, 2015, 43(2): 282-287.
4
Opal SM. Immunologic alterations and the pathogenesis of organ failure in the ICU [J]. Semin Respir Crit Care Med, 2011, 32(5): 569-580.
5
Cohen J, Opal S, Calandra T. Sepsis studies need new direction [J]. Lancet Infect Dis, 2012, 12(7): 503-505.
6
Angus DC. The search for effective therapy for sepsis: back to the drawing board? [J]. JAMA, 2011, 306(23): 2614-2615.
7
Bone RC, Grodzin CJ, Balk RA. Sepsis: a new hypothesis for pathogenesis of the disease process [J]. Chest, 1997, 112(1): 235-243.
8
Boomer JS, To K, Chang KC, et al. Immunosuppression in patients who die of sepsis and multiple organ failure [J]. JAMA, 2011, 306(23): 2594-2605.
9
Delano MJ, Ward PA. Sepsis-induced immune dysfunction: can immune therapies reduce mortality? [J]. J Clin Invest, 2016, 126(1): 23-31.
10
Wang H, Zhu S, Zhou R, et al. Therapeutic potential of HMGB1-targeting agents in sepsis [J]. Expert Rev Mol Med, 2008, 10: e32.
11
Boomer JS, Green JM, Hotchkiss RS. The changing immune system in sepsis: is individualized immuno-modulatory therapy the answer? [J]. Virulence, 2014, 5(1): 45-56.
12
Beura LK, Hamilton SE, Bi K, et al. Normalizing the environment recapitulates adult human immune traits in laboratory mice [J]. Nature, 2016, 532(7600): 512-516.
13
Xie J, Chen CW, Sun Y, et al. Increased attrition of memory T cells during sepsis requires 2B4 [J]. JCI Insight, 2019, 4(9): e126030.
14
Mosser DM, Zhang X. Interleukin-10: new perspectives on an old cytokine [J]. Immunol Rev, 2008, 226: 205-218.
15
Tatura R, Zeschnigk M, Hansen W, et al. Relevance of Foxp3+ regulatory T cells for early and late phases of murine sepsis [J]. Immunology, 2015, 146(1): 144-156.
16
Boomer JS, Shuherk-Shaffer J, Hotchkiss RS, et al. A prospective analysis of lymphocyte phenotype and function over the course of acute sepsis [J]. Crit Care, 2012, 16(3): R112.
17
Felmet KA, Hall MW, Clark RS, et al. Prolonged lymphopenia, lymphoid depletion, and hypoprolactinemia in children with nosocomial sepsis and multiple organ failure [J]. J Immunol, 2005, 174(6): 3765-3772.
18
Toti P, De Felice C, Occhini R, et al. Spleen depletion in neonatal sepsis and chorioamnionitis [J]. AMER J Clin Pathol, 2004, 122(5): 765-771.
19
Chang KC, Unsinger J, Davis CG, et al. Multiple triggers of cell death in sepsis: death receptor and mitochondrial-mediated apoptosis [J]. FASEB J, 2007, 21(3): 708-719.
20
Leng FY, Liu JL, Liu ZJ, et al. Increased proportion of CD4+ CD25+ Foxp3+ regulatory T cells during early-stage sepsis in ICU patients [J]. J Microbiol Immunol Infect, 2013, 46(5): 338-344.
21
Venet F, Chung CS, Kherouf H, et al. Increased circulating regulatory T cells (CD4+ CD25+ CD127-) contribute to lymphocyte anergy in septic shock patients [J]. Intensive Care Med, 2009, 35(4): 678-686.
22
Venet F, Chung CS, Monneret G, et al. Regulatory T cell populations in sepsis and trauma [J]. J Leukoc Biol, 2008, 83(3): 523-535.
23
Delano MJ, Scumpia PO, Weinstein JS, et al. MyD88-dependent expansion of an immature GR-1+CD11b+ population induces T cell suppression and Th2 polarization in sepsis [J]. J Exp Med, 2007, 204(6): 1463-1474.
24
Barnstorf I, Borsa M, Baumann N, et al. Chronic virus infection compromises memory bystander T cell function in an IL-6/STAT1-dependent manner [J]. J Exp Med, 2019, 216(3): 571-586.
25
Regis G, Icardi L, Conti L, et al. IL-6, but not IFN-gamma, triggers apoptosis and inhibits in vivo growth of human malignant T cells on STAT3 silencing [J]. Leukemia, 2009, 23(11): 2102-2108.
26
Jimbo A, Fujita E, Kouroku Y, et al. ER stress induces caspase-8 activation, stimulating cytochrome c release and caspase-9 activation [J]. Exp Cell Res, 2003, 283(2): 156-166.
27
Yi JS, Cox MA, Zajac AJ. T-cell exhaustion: characteristics, causes and conversion [J]. Immunology, 2010, 129(4): 474-481.
28
Hein F, Massin F, Cravoisy-Popovic A, et al. The relationship between CD4+CD25+CD127- regulatory T cells and inflammatory response and outcome during shock states [J]. Crit Care, 2010, 14(1): R19.
29
Scumpia PO, Delano MJ, Kelly KM, et al. Increased natural CD4+CD25+ regulatory T cells and their suppressor activity do not contribute to mortality in murine polymicrobial sepsis [J]. J Immunol, 2006, 177(11): 7943-7949.
30
Kuhlhorn F, Rath M, Schmoeckel K, et al. Foxp3+ regulatory T cells are required for recovery from severe sepsis [J]. PLoS One, 2013, 8(5): e65109.
31
Angus DC, van der Poll T. Severe sepsis and septic shock [J]. N Engl J Med, 2013, 369(9): 840-851.
32
Efron PA, Mohr AM, Moore FA, et al. The future of murine sepsis and trauma research models [J]. J Leukoc Biol, 2015, 98(6): 945-952.
33
Lewis AJ, Rosengart MR. Bench-to-bedside: a translational perspective on murine models of sepsis [J]. Surg Infect (Larchmt), 2018, 19(2): 137-141.
34
Hotchkiss RS, Moldawer LL. Parallels between cancer and infectious disease [J]. N Engl J Med, 2014, 371(4): 380-383.
35
Brahmamdam P, Inoue S, Unsinger J, et al. Delayed administration of anti-PD-1 antibody reverses immune dysfunction and improves survival during sepsis [J]. J Leukoc Biol, 2010, 88(2): 233-240.
36
Patera AC, Drewry AM, Chang K, et al. Frontline science: defects in immune function in patients with sepsis are associated with PD-1 or PD-L1 expression and can be restored by antibodies targeting PD-1 or PD-L1 [J]. J Leukoc Biol, 2016, 100(6): 1239-1254.
37
Chang KC, Burnham CA, Compton SM, et al. Blockade of the negative co-stimulatory molecules PD-1 and CTLA-4 improves survival in primary and secondary fungal sepsis [J]. Crit Care, 2013, 17(3): R85.
38
Nalos M, Santner-Nanan B, Parnell G, et al. Immune effects of inter-feron gamma in persistent staphylococcal sepsis [J]. Am J Respir Crit Care Med, 2012, 185(1): 110-112.
39
Perales MA, Goldberg JD, Yuan J, et al. Recombinant human interleukin-7 (CYT107) promotes T-cell recovery after allogeneic stem cell transplantation [J]. Blood, 2012, 120(24): 4882-4891.
40
Unsinger J, McGlynn M, Kasten KR, et al. IL-7 promotes T cell viability, trafficking, and functionality and improves survival in sepsis [J]. J Immunol, 2010, 184(7): 3768-3779.
41
Wesche-Soldato DE, Swan RZ, Chung CS, et al. The apoptotic pathway as a therapeutic target in sepsis [J]. Curr Drug Targets, 2007, 8(4): 493-500.
[1] 韩媛媛, 热孜亚·萨贝提, 冒智捷, 穆福娜依·艾尔肯, 陆晨, 桑晓红, 阿尔曼·木拉提, 张丽. 组合式血液净化治疗对脓毒症患者血清炎症因子水平和临床预后的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 272-278.
[2] 孟建标, 张庚, 焦燕娜. 脓毒症合并心功能障碍患者早期肠道微生态改变的探讨[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 279-285.
[3] 陈宇, 冯芳, 张露, 刘健. 基于生物信息学分析筛选脓毒症心肌病关键致病基因[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 286-291.
[4] 作者. 脓毒症与脓毒性休克[J]. 中华危重症医学杂志(电子版), 2023, 16(03): 0-.
[5] 莫小乔, 胡喆莹, 廖冬花, 谢天. 脓毒症继发急性肾损伤患者死亡风险预测模型构建及评估[J]. 中华危重症医学杂志(电子版), 2023, 16(03): 198-206.
[6] 张晓燕, 肖东琼, 高沪, 陈琳, 唐发娟, 李熙鸿. 转录因子12过表达对脓毒症相关性脑病大鼠大脑皮质的保护作用及其机制[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 540-549.
[7] 魏徐, 张鸽, 伍金林. 新生儿脓毒症相关性凝血病的监测和治疗[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 379-386.
[8] 姚咏明. 如何精准评估烧伤脓毒症患者免疫状态[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 552-552.
[9] 窦上文, 邓欢, 刘邦锋, 岳高远志, 朱华财, 刘永达. 术前复查尿培养在预测微通道经皮肾镜取石术相关感染并发症中的作用[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 361-366.
[10] 李伟, 卓剑, 黄川, 黄有攀. Lac、HO-1、sRAGE、CRP/ALB表达及脓毒症并发ARDS危险因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 514-516.
[11] 苗软昕, 乔晞. Toll样受体在脓毒症性急性肾损伤中的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 210-214.
[12] 李世明, 黄蔚, 刘玲. HMGB1介导脓毒症相关凝血功能障碍的作用机制及其治疗进展[J]. 中华重症医学电子杂志, 2023, 09(03): 269-273.
[13] 高超, 巢杰, 邱海波. T-bet:脓毒症免疫失衡中Th17细胞的新型调节分子[J]. 中华重症医学电子杂志, 2023, 09(03): 280-285.
[14] 谭睿, 王晶, 於江泉, 郑瑞强. 脓毒症中高密度脂蛋白、载脂蛋白A-I和血清淀粉样蛋白A的作用研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(06): 749-753.
[15] 蔡荇, 郑瑞强. 肝素结合蛋白在脓毒症中的应用及研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(04): 487-490.
阅读次数
全文


摘要