切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2022, Vol. 08 ›› Issue (01) : 37 -42. doi: 10.3877/cma.j.issn.2096-1537.2022.01.005

临床研究

细菌过滤器联合加热湿化器对预防呼吸机相关性肺炎的效果
李朝阳1, 曹权1, 李金海1,()   
  1. 1. 210029 南京医科大学第一附属医院重症医学科
  • 收稿日期:2021-02-02 出版日期:2022-02-28
  • 通信作者: 李金海

Impact of bacterial filters combined hot-water humidification on prevention of ventilator-associated pneumonia

Zhaoyang Li1, Quan Cao1, Jinhai Li1,()   

  1. 1. Department of Intensive Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
  • Received:2021-02-02 Published:2022-02-28
  • Corresponding author: Jinhai Li
引用本文:

李朝阳, 曹权, 李金海. 细菌过滤器联合加热湿化器对预防呼吸机相关性肺炎的效果[J]. 中华重症医学电子杂志, 2022, 08(01): 37-42.

Zhaoyang Li, Quan Cao, Jinhai Li. Impact of bacterial filters combined hot-water humidification on prevention of ventilator-associated pneumonia[J]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2022, 08(01): 37-42.

目的

研究细菌过滤器联合加热湿化器对呼吸机相关性肺炎(VAP)发生率的影响。

方法

采用前瞻性随机对照试验方法,选择2017年3月至2020年3月在南京医科大学第一附属医院ICU需行机械通气≥48 h的患者210例,将其随机分为细菌过滤器组(104例)和对照组(106例)。对照组患者采用加热湿化器,不联合任何过滤装置,实验组采用加热湿化器联合细菌过滤器。采用单因素logistic回归分析研究VAP发生的危险因素,采用Kaplan-Meier法比较2组患者VAP的累积发生率,采用亚组分析及Cox生存回归分析研究细菌过滤器预防VAP的效果。

结果

细菌过滤器组气管切开患者比例较对照组低,差异有统计学意义(19.2% vs 38.7%,χ2=9.634,P=0.002)。2组VAP患病率比较,差异无统计学意义(22.1% vs 34.0%,χ2=3.647,P=0.066),Logistic回归分析显示,细菌过滤器未能有效减少VAP的发生率(OR=0.552,95% CI=0.299~1.019,P=0.058);Kaplan-Meier分析未显示细菌过滤器在预防VAP方面具有显著优势(log-rank检验,P=0.060);亚组分析及Cox生存回归分析显示,在机械通气<25 d的患者中,细菌过滤器显著减少VAP的发生率(HR=0.373,P=0.004)。

结论

在机械通气<25 d的患者中,细菌过滤器联合加热湿化可以显著减少VAP的发生率,但随着机械通气时间的延长而不再有意义。

Objective

To explore the effects of bacterial filters (BFs) combined hot-water humidification on reducing the incidence of ventilator-associated pneumonia (VAP).

Methods

A prospective randomized controlled trial was performed in ICU of Nanjing Medical University from March 2017 to March 2020 that enrolled patients under mechanical ventilation for ≥48 hours. These patients were randomly assigned to the bacterial filter (BF) group (104 cases) or non-bacterial filter (NBF) group (106 cases). NBF group was treated with hot-water humidification (HH) while BF group was treated with HH combined BF. Univariate logistic analysis was applied to explore the risk factors for VAP. The Kaplan-Meier method was used to compare the cumulative incidence of VAP in group 2 patients. Cox proportional-hazards regression and post hoc subgroup analysis were used to determine the effects of the filter on the incidence of VAP.

Results

The proportion of patients with tracheotomy was low and statistically significant (19.2% vs 38.7%, χ2=9.634, P=0.002), the prevalence of VAP in two groups had no difference without statistical significance (22.1% vs 34.0%, χ2=3.647, P=0.066). Logistic regression analysis revealed that the bacterial filter failed to effectively reduce VAP occurrence (OR=0.552, 95% CI=0.299-1.019, P=0.058). The Kaplan-Meier analysis did not show significant advantages of bacterial filters in preventing VAP (log-rank test P=0.060). Subgroup analysis and Cox survival regression analysis showed that bacterial filters significantly reduced VAP occurrence in patients with mechanical ventilation of<25 d (HR=0.373, P=0.004).

Conclusion

Bacterial filters can significantly reduce the incidence of VAP in patients under mechanical ventilation for<25 days with hot-water humidification, although this benefit became insignificant for prolonged mechanical ventilation.

图1 细菌过滤器安装位置示意图
表1 需行机械通气>48 h患者的基本资料
表2 VAP危险因素的单因素logistic回归分析
图2 细菌过滤器组和对照组患者呼吸机相关性肺炎的Kaplan-Meier分析
表3 各亚组VAP危险因素的单因素logistic回归分析
表4 短时间机械通气组VAP危险因素的Cox生存回归分析
1
Coppadoro A, Bellani G, Foti G. Non-pharmacological interventions to prevent ventilator-associated pneumonia: a literature review [J]. Respir Care, 2019, 64(12): 1586-1595.
2
Modi AR, Kovacs CS. Hospital-acquired and ventilator-associated pneumonia: Diagnosis, management, and prevention [J]. Cleve Clin J Med, 2020, 87(10): 633-639.
3
Papazian L, Klompas M, Luyt CE. Ventilator-associated pneumonia in adults: a narrative review [J]. Intensive Care Med, 2020, 46(5): 888-906.
4
Wu D, Wu C, Zhang S, et al. Risk factors of ventilator-associated pneumonia in critically ill patients [J]. Front Pharmacol, 2019, 10: 482.
5
Wilkes AR. Heat and moisture exchangers and breathing system filters: their use in anaesthesia and intensive care. Part 1 - history, principles and efficiency [J]. Anaesthesia, 2011, 66(1): 31-39.
6
Lucato JJJ, Barbosa RCC, Picanço PSA. Influence of a heat and moisture exchanger with a microbiological filter on measurements of maximal respiratory pressures and vital capacity in patients with COPD [J]. J Bras Pneumol, 2019, 46(1): e20190054.
7
Sundaram M, Ravikumar N, Bansal A, et al. Novel coronavirus 2019 (2019-nCoV) infection: part Ⅱ - respiratory support in the pediatric intensive care unit in resource-limited settings [J]. Indian Pediatr, 2020, 57(4): 335-342.
8
Oğuz S, Değer I. Ventilator-associated pneumonia in patients using HME filters and heated humidifiers [J]. Ir J Med Sci, 2013, 182(4): 651-655.
9
Siempos II, Vardakas KZ, Kopterides P, et al. Impact of passive humidification on clinical outcomes of mechanically ventilated patients: a meta-analysis of randomized controlled trials [J]. Crit Care Med, 2007, 35(12): 2843-2851.
10
Kola A, Eckmanns T, Gastmeier P. Efficacy of heat and moisture exchangers in preventing ventilator-associated pneumonia: meta-analysis of randomized controlled trials [J]. Intensive Care Med, 2005, 31(1): 5-11.
11
Tablan OC, Anderson LJ, Besser R, et al. Guidelines for preventing health-care-associated pneumonia, 2003: recommendations of CDC and the Healthcare Infection Control Practices Advisory Committee [J]. MMWR Recomm Rep, 2004, 53(Rr-3): 1-36.
12
Coffin SE, Klompas M, Classen D, et al. Strategies to prevent ventilator-associated pneumonia in acute care hospitals [J]. Infect Control Hosp Epidemiol, 2008, 29: 31-40.
13
Nakanishi N, Oto J, Itagaki T, et al. Humidification performance of passive and active humidification devices within a spontaneously breathing tracheostomized cohort [J]. Respir Care, 2019, 64(2): 130-135.
14
Patel V, Dean J, Vayalil LJ, et al. Humidicare - an implementation study of a novel HME safety device designed to prevent ventilator circuit occlusion due to inadvertent dual humidification [J]. J Med Eng Technol, 2021, 45(2): 129-135.
15
Lavoie-Bérard CA, Lefebvre JC, Bouchard PA, et al. Impact of airway humidification strategy in the mechanically ventilated COVID-19 patients [J]. Respir Care, 2021, 66(11): Online ahead of print.
16
Yin X, Yang L, Sun H, et al. A comparative evaluation of three common airway humidification methods for patients with severe traumatic brain injury [J]. Ann Palliat Med, 2020, 9(6): 4137-4145.
17
Cashen K, Sarnaik AP. Ventilator-associated conditions: are the new definitions "eliminating the noise" or ignoring important preconditions? [J]. Pediatr Crit Care Med, 2018, 19(6): 578-579.
18
Kanda T, Oishi Y, Kajiyama A, et al. Effect of a heat and moisture exchanger on temperature and humidity of inhaled gas in isoflurane-anesthetized dogs [J]. Vet Anaesth Analg, 2020, 47(3): 377-380.
19
张丽娜, 吴铁军, 张喜红. 低温刺激影响气道黏蛋白分泌与AECOPD [J]. 中华危重病急救医学, 2020, 32(10): 1273-1276.
20
裘凯, 郑永科, 顾南媛, 等. 呼吸机内部回路消毒在机械通气患者中的应用观察 [J]. 中华危重病急救医学, 2019, 31(4): 449-452.
21
邹联洪, 徐晖, 文辉, 等. 不同级别医院呼吸机消毒现状调查 [J]. 实用预防医学, 2019, 26(10): 1262-1264.
22
Doukas DJ, Paladino L, Hanuscin C,et al. Evaluating cross contamination on a shared ventilator [J]. Emerg Med J, 2021, 38(3): 220-223.
23
黄桃, 王国琴, 徐钦, 等. 新型冠状病毒患者机械通气中的感染防控措施 [J]. 中国医疗器械杂志, 2020, 44(5): 453-456.
[1] 豆艺璇, 黄怀, 钱绮雯, 邢然然, 林丽, 白建芳. 低强度吸气肌训练对机械通气患者肺康复的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 370-375.
[2] 徐娟, 孙汝贤, 赵东亚, 张清艳, 金兆辰, 蔡燕. 右美托咪定序贯镇静模式对中深度镇静的机械通气患者预后和谵妄的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 363-369.
[3] 许振琦, 易伟, 范闻轩, 王金锋. 经鼻高流量氧疗与无创机械通气在严重创伤术后轻中度低氧血症患者中的临床应用[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 306-309.
[4] 张巧梅, 孙小平, 李冠胜, 邓扬嘉. 针灸对大鼠呼吸机相关性肺炎中性粒细胞归巢及胞外诱捕网的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 265-271.
[5] 佳麒, 罗楷, 杨磊, 李羽. 气管插管患儿围术期套囊压力管理研究现状杨[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(02): 132-138.
[6] 安钱, 徐彬, 陈志祥, 徐晶晶, 黄丹丹. PCT、CRP及SAA对呼吸机相关性肺炎病情严重程度和预后分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 544-546.
[7] 钱晓英, 吴新, 徐婷婷. 颅脑损伤并发呼吸衰竭患者早期机械通气的效果分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 526-528.
[8] 代芬, 卞士柱. 无创机械通气联合肺康复在肺动脉高压呼吸衰竭治疗中的临床应用[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 560-562.
[9] 程传丽, 曾慧, 周静, 孙凌霞, 吴敏, 钱明江, 陈武, 万洁, 周仁佳. 超声引导下胸肺物理治疗对机械通气患者膈肌功能的疗效分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 563-565.
[10] 徐欣轶, 薛蓓, 蒋莉, 陈慧. NRI联合CFS评分对肺癌术后机械通气的预测分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 358-360.
[11] 林金锋, 张素燕, 田李均, 曹志龙, 徐俊贤, 韩旭东. 短暂呼气末阻塞法用于指导机械通气患者撤机的临床分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 266-268.
[12] 周旻忞, 张恒喜, 冯华, 施林燕. 超声膈肌功能评估对重症肺炎伴呼吸衰竭患者机械通气撤机的指导意义[J]. 中华肺部疾病杂志(电子版), 2023, 16(01): 98-100.
[13] 朱秀芬, 韦碧琳, 郑慧芳, 丁林芳, 徐子萌, 余文轩, 原皓, 常泽楠, 黄志坤, 刘紫锰. T管与PSV自主呼吸试验对重症患者成功撤机后临床转归的影响——一项回顾性队列研究[J]. 中华重症医学电子杂志, 2023, 09(01): 54-61.
[14] 张俊谊, 徐晓婷, 刘玲. 肌肉组织特异性miRNA与机械通气患者膈肌功能及撤机结局的关系[J]. 中华重症医学电子杂志, 2023, 09(01): 46-53.
[15] 李宏亮, 周建新. 反转触发:易被忽视的人机不同步[J]. 中华重症医学电子杂志, 2023, 09(01): 19-24.
阅读次数
全文


摘要