切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2022, Vol. 08 ›› Issue (01) : 37 -42. doi: 10.3877/cma.j.issn.2096-1537.2022.01.005

临床研究

细菌过滤器联合加热湿化器对预防呼吸机相关性肺炎的效果
李朝阳1, 曹权1, 李金海1,()   
  1. 1. 210029 南京医科大学第一附属医院重症医学科
  • 收稿日期:2021-02-02 出版日期:2022-02-28
  • 通信作者: 李金海

Impact of bacterial filters combined hot-water humidification on prevention of ventilator-associated pneumonia

Zhaoyang Li1, Quan Cao1, Jinhai Li1,()   

  1. 1. Department of Intensive Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
  • Received:2021-02-02 Published:2022-02-28
  • Corresponding author: Jinhai Li
引用本文:

李朝阳, 曹权, 李金海. 细菌过滤器联合加热湿化器对预防呼吸机相关性肺炎的效果[J/OL]. 中华重症医学电子杂志, 2022, 08(01): 37-42.

Zhaoyang Li, Quan Cao, Jinhai Li. Impact of bacterial filters combined hot-water humidification on prevention of ventilator-associated pneumonia[J/OL]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2022, 08(01): 37-42.

目的

研究细菌过滤器联合加热湿化器对呼吸机相关性肺炎(VAP)发生率的影响。

方法

采用前瞻性随机对照试验方法,选择2017年3月至2020年3月在南京医科大学第一附属医院ICU需行机械通气≥48 h的患者210例,将其随机分为细菌过滤器组(104例)和对照组(106例)。对照组患者采用加热湿化器,不联合任何过滤装置,实验组采用加热湿化器联合细菌过滤器。采用单因素logistic回归分析研究VAP发生的危险因素,采用Kaplan-Meier法比较2组患者VAP的累积发生率,采用亚组分析及Cox生存回归分析研究细菌过滤器预防VAP的效果。

结果

细菌过滤器组气管切开患者比例较对照组低,差异有统计学意义(19.2% vs 38.7%,χ2=9.634,P=0.002)。2组VAP患病率比较,差异无统计学意义(22.1% vs 34.0%,χ2=3.647,P=0.066),Logistic回归分析显示,细菌过滤器未能有效减少VAP的发生率(OR=0.552,95% CI=0.299~1.019,P=0.058);Kaplan-Meier分析未显示细菌过滤器在预防VAP方面具有显著优势(log-rank检验,P=0.060);亚组分析及Cox生存回归分析显示,在机械通气<25 d的患者中,细菌过滤器显著减少VAP的发生率(HR=0.373,P=0.004)。

结论

在机械通气<25 d的患者中,细菌过滤器联合加热湿化可以显著减少VAP的发生率,但随着机械通气时间的延长而不再有意义。

Objective

To explore the effects of bacterial filters (BFs) combined hot-water humidification on reducing the incidence of ventilator-associated pneumonia (VAP).

Methods

A prospective randomized controlled trial was performed in ICU of Nanjing Medical University from March 2017 to March 2020 that enrolled patients under mechanical ventilation for ≥48 hours. These patients were randomly assigned to the bacterial filter (BF) group (104 cases) or non-bacterial filter (NBF) group (106 cases). NBF group was treated with hot-water humidification (HH) while BF group was treated with HH combined BF. Univariate logistic analysis was applied to explore the risk factors for VAP. The Kaplan-Meier method was used to compare the cumulative incidence of VAP in group 2 patients. Cox proportional-hazards regression and post hoc subgroup analysis were used to determine the effects of the filter on the incidence of VAP.

Results

The proportion of patients with tracheotomy was low and statistically significant (19.2% vs 38.7%, χ2=9.634, P=0.002), the prevalence of VAP in two groups had no difference without statistical significance (22.1% vs 34.0%, χ2=3.647, P=0.066). Logistic regression analysis revealed that the bacterial filter failed to effectively reduce VAP occurrence (OR=0.552, 95% CI=0.299-1.019, P=0.058). The Kaplan-Meier analysis did not show significant advantages of bacterial filters in preventing VAP (log-rank test P=0.060). Subgroup analysis and Cox survival regression analysis showed that bacterial filters significantly reduced VAP occurrence in patients with mechanical ventilation of<25 d (HR=0.373, P=0.004).

Conclusion

Bacterial filters can significantly reduce the incidence of VAP in patients under mechanical ventilation for<25 days with hot-water humidification, although this benefit became insignificant for prolonged mechanical ventilation.

图1 细菌过滤器安装位置示意图
表1 需行机械通气>48 h患者的基本资料
表2 VAP危险因素的单因素logistic回归分析
图2 细菌过滤器组和对照组患者呼吸机相关性肺炎的Kaplan-Meier分析
表3 各亚组VAP危险因素的单因素logistic回归分析
表4 短时间机械通气组VAP危险因素的Cox生存回归分析
1
Coppadoro A, Bellani G, Foti G. Non-pharmacological interventions to prevent ventilator-associated pneumonia: a literature review [J]. Respir Care, 2019, 64(12): 1586-1595.
2
Modi AR, Kovacs CS. Hospital-acquired and ventilator-associated pneumonia: Diagnosis, management, and prevention [J]. Cleve Clin J Med, 2020, 87(10): 633-639.
3
Papazian L, Klompas M, Luyt CE. Ventilator-associated pneumonia in adults: a narrative review [J]. Intensive Care Med, 2020, 46(5): 888-906.
4
Wu D, Wu C, Zhang S, et al. Risk factors of ventilator-associated pneumonia in critically ill patients [J]. Front Pharmacol, 2019, 10: 482.
5
Wilkes AR. Heat and moisture exchangers and breathing system filters: their use in anaesthesia and intensive care. Part 1 - history, principles and efficiency [J]. Anaesthesia, 2011, 66(1): 31-39.
6
Lucato JJJ, Barbosa RCC, Picanço PSA. Influence of a heat and moisture exchanger with a microbiological filter on measurements of maximal respiratory pressures and vital capacity in patients with COPD [J]. J Bras Pneumol, 2019, 46(1): e20190054.
7
Sundaram M, Ravikumar N, Bansal A, et al. Novel coronavirus 2019 (2019-nCoV) infection: part Ⅱ - respiratory support in the pediatric intensive care unit in resource-limited settings [J]. Indian Pediatr, 2020, 57(4): 335-342.
8
Oğuz S, Değer I. Ventilator-associated pneumonia in patients using HME filters and heated humidifiers [J]. Ir J Med Sci, 2013, 182(4): 651-655.
9
Siempos II, Vardakas KZ, Kopterides P, et al. Impact of passive humidification on clinical outcomes of mechanically ventilated patients: a meta-analysis of randomized controlled trials [J]. Crit Care Med, 2007, 35(12): 2843-2851.
10
Kola A, Eckmanns T, Gastmeier P. Efficacy of heat and moisture exchangers in preventing ventilator-associated pneumonia: meta-analysis of randomized controlled trials [J]. Intensive Care Med, 2005, 31(1): 5-11.
11
Tablan OC, Anderson LJ, Besser R, et al. Guidelines for preventing health-care-associated pneumonia, 2003: recommendations of CDC and the Healthcare Infection Control Practices Advisory Committee [J]. MMWR Recomm Rep, 2004, 53(Rr-3): 1-36.
12
Coffin SE, Klompas M, Classen D, et al. Strategies to prevent ventilator-associated pneumonia in acute care hospitals [J]. Infect Control Hosp Epidemiol, 2008, 29: 31-40.
13
Nakanishi N, Oto J, Itagaki T, et al. Humidification performance of passive and active humidification devices within a spontaneously breathing tracheostomized cohort [J]. Respir Care, 2019, 64(2): 130-135.
14
Patel V, Dean J, Vayalil LJ, et al. Humidicare - an implementation study of a novel HME safety device designed to prevent ventilator circuit occlusion due to inadvertent dual humidification [J]. J Med Eng Technol, 2021, 45(2): 129-135.
15
Lavoie-Bérard CA, Lefebvre JC, Bouchard PA, et al. Impact of airway humidification strategy in the mechanically ventilated COVID-19 patients [J]. Respir Care, 2021, 66(11): Online ahead of print.
16
Yin X, Yang L, Sun H, et al. A comparative evaluation of three common airway humidification methods for patients with severe traumatic brain injury [J]. Ann Palliat Med, 2020, 9(6): 4137-4145.
17
Cashen K, Sarnaik AP. Ventilator-associated conditions: are the new definitions "eliminating the noise" or ignoring important preconditions? [J]. Pediatr Crit Care Med, 2018, 19(6): 578-579.
18
Kanda T, Oishi Y, Kajiyama A, et al. Effect of a heat and moisture exchanger on temperature and humidity of inhaled gas in isoflurane-anesthetized dogs [J]. Vet Anaesth Analg, 2020, 47(3): 377-380.
19
张丽娜, 吴铁军, 张喜红. 低温刺激影响气道黏蛋白分泌与AECOPD [J]. 中华危重病急救医学, 2020, 32(10): 1273-1276.
20
裘凯, 郑永科, 顾南媛, 等. 呼吸机内部回路消毒在机械通气患者中的应用观察 [J]. 中华危重病急救医学, 2019, 31(4): 449-452.
21
邹联洪, 徐晖, 文辉, 等. 不同级别医院呼吸机消毒现状调查 [J]. 实用预防医学, 2019, 26(10): 1262-1264.
22
Doukas DJ, Paladino L, Hanuscin C,et al. Evaluating cross contamination on a shared ventilator [J]. Emerg Med J, 2021, 38(3): 220-223.
23
黄桃, 王国琴, 徐钦, 等. 新型冠状病毒患者机械通气中的感染防控措施 [J]. 中国医疗器械杂志, 2020, 44(5): 453-456.
[1] 尹燕燕, 刘爱贤. 多重耐药菌感染呼吸机相关性肺炎的危险因素及预后分析[J/OL]. 中华实验和临床感染病杂志(电子版), 2024, 18(02): 83-90.
[2] 刘春军, 严方方, 王宝锋, 常婷婷, 郭红红, 李志强. 替加环素联合人免疫球蛋白治疗XDRAB致VAP 的疗效分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 797-800.
[3] 燕红玲, 王岩岩, 陈树斌. PCT、NLR联合LUBS预测ICU CRKP致呼吸机相关肺炎撤机及预后分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 617-620.
[4] 张璇, 高杨, 房雅君, 姚艳玲. 保护性机械通气在肺癌胸腔镜肺段切除术中的临床应用[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 563-567.
[5] 彭祺, 马丽娜, 李倩倩, 陈旭. 重症病毒性肺炎机械通气脱机的影响因素分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(02): 260-263.
[6] 从长春, 王春琳, 武孝刚, 王金标, 章福彬, 孙磊, 王李. 重型颅脑损伤患者呼吸机相关性肺炎的危险因素及病原学分析[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(03): 151-157.
[7] 潘清, 葛慧青. 基于机械通气波形大数据的人机不同步自动监测方法[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 399-403.
[8] 苗明月, 周建新. 肺保护性镇静:应重视呼吸驱动和吸气努力的床旁评估[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 325-328.
[9] 韦小霞, 陈管洁, 李雪珠, 李晓青, 钱淑媛. 机械通气患者抗菌药物雾化吸入的临床实施[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 334-337.
[10] 倪韫晖, 杨毅, 袁雪燕, 邱海波. 胸壁加压在急性呼吸窘迫综合征中的应用和临床进展[J/OL]. 中华重症医学电子杂志, 2024, 10(03): 243-247.
[11] 刘春峰, 徐朝晖, 施红伟, 陈瑢, 马腾飞, 李鹏飞, 袁蓉, 陈建荣, 徐爱明. 机械通气患者肌肉减少症的诊断及其对预后的影响[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 820-825.
[12] 王文珠, 刘建, 袁常秀, 石亚飞, 尤培军. 竖脊肌平面阻滞对非体外循环冠状动脉旁路移植术中阿片类药物用量的影响[J/OL]. 中华诊断学电子杂志, 2024, 12(03): 155-159.
[13] 李春光, 杨洋, 李斌, 华荣, 孙益峰, 李志刚. 不同外科修复模式治疗机械通气相关气管食管瘘的短期疗效评价[J/OL]. 中华胸部外科电子杂志, 2024, 11(03): 151-157.
[14] 刘晓鹏, 柳聪艳, 杨宁, 蔡琛, 李晓兵, 王红宇, 张思森. 三穴五针联合腹部提压法在机械通气患者肺康复中的疗效[J/OL]. 中华卫生应急电子杂志, 2024, 10(04): 193-198.
[15] 刘晴雯, 韩勇, 陈丽丹, 邓哲. 早期机械通气对成人院内心脏骤停病死率的影响:一项回顾性队列研究[J/OL]. 中华卫生应急电子杂志, 2024, 10(04): 203-206.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?