切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2024, Vol. 10 ›› Issue (01) : 31 -37. doi: 10.3877/cma.j.issn.2096-1537.2024.01.005

临床研究

新型冠状病毒感染ARDS患者EIT监测下俯卧位通气成像的改变
王晶晶1, 谢晖1, 邓璞钰1, 张晨晨1, 田学1, 谢云1, 王瑞兰1,()   
  1. 1. 201620 上海,南京医科大学附属上海一院临床医学院 上海交通大学附属第一人民医院急诊危重病科
  • 收稿日期:2023-03-20 出版日期:2024-02-28
  • 通信作者: 王瑞兰
  • 基金资助:
    上海申康医院发展中心临床三年行动计划资助(SHDC2020CR5010-003)

Prone positioning improves ventilation distribution and ventilation-perfusion matching assessed by electrical impedance tomography in COVID-19 patients with ARDS

Jingjing Wang1, Hui Xie1, Puyu Deng1, Chenchen Zhang1, Xue Tian1, Yun Xie1, Ruilan Wang1,()   

  1. 1. Department of Critical Care Medicine, Shanghai General Hospital of Nanjing Medical University, Shanghai Jiaotong University, School of Medicine, Shanghai 201620, China
  • Received:2023-03-20 Published:2024-02-28
  • Corresponding author: Ruilan Wang
引用本文:

王晶晶, 谢晖, 邓璞钰, 张晨晨, 田学, 谢云, 王瑞兰. 新型冠状病毒感染ARDS患者EIT监测下俯卧位通气成像的改变[J]. 中华重症医学电子杂志, 2024, 10(01): 31-37.

Jingjing Wang, Hui Xie, Puyu Deng, Chenchen Zhang, Xue Tian, Yun Xie, Ruilan Wang. Prone positioning improves ventilation distribution and ventilation-perfusion matching assessed by electrical impedance tomography in COVID-19 patients with ARDS[J]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2024, 10(01): 31-37.

目的

通过电阻抗断层成像(EIT)动态评估新型冠状病毒(简称新冠病毒)感染急性呼吸窘迫综合征(ARDS)患者俯卧位通气(PP)的生理效应,并确定其肺保护的预测因素。

方法

本前瞻性研究共纳入2022年12月至2023年2月入住上海交通大学附属第一人民医院ICU的15例采用PP治疗的新冠病毒感染ARDS患者。收集PP开始前(T0)、PP开始后2 h(T1)、PP结束后(T2)3个时间节点所有患者动脉血气(ABG)分析结果、呼吸机参数和血流动力学参数,包括心率(HR)、平均动脉压(MAP),同时进行EIT记录。

结果

经过PP治疗,PaO2/FiO2逐渐上升[T0 vs T1 vs T2:(173.17±17.73)vs(257.05±57.39)vs(299.03±71.18)mmHg,P<0.001],分钟通气量(MV)显著上升[T0 vs T1 vs T2:(8.14±2.38)vs(8.89±1.29)vs(11.40±1.91)L/min,P<0.001],Crs显著上升 [T0 vs T1 vs T2:(27.63±7.50)vs(30.60±7.40)vs(31.53±8.29)ml/cmH2O,P=0.041],差异均有统计学意义。背侧通气占比增加[T0 vs T1 vs T2:(39.87±18.74)% vs(62.20±18.70)% vs(51.40±18.43)%,P=0.001],差异有统计学意义。与PP开始前(T0)比较,PP开始后2 h(T1)通气-灌注匹配显著提高[T0 vs T1(66.67±12.81)% vs(78.24±10.60)%,P=0.03],差异有统计学意义。

结论

PP改善了新冠病毒感染ARDS患者肺部Crs与通气分布均一性,改善通气-灌注匹配。

Objective

To assess the impact of prone positioning (PP) on lung ventilation and perfusion in COVID-9 patients with moderate to severe acute respiratory distress syndrome (ARDS) using electrical impedance tomography (EIT), to investigate the effects of PP on the distribution of ventilation and oxygenation in non-intubated patients.

Methods

This prospective study comprised 15 patients with COVID-19 ARDS who received treatment in the prone position and were admitted to the Critical Care Medicine Department of Shanghai General Hospital, affiliated with Shanghai Jiaotong University, between December 2022 and February 2023. Arterial blood gas (ABG) analysis, ventilator parameters, and hemodynamic parameters of all patients at three-time points before the start of the prone position (T0), 2 hours after the start of the prone position (T1), 2 hours after the end of the prone position (T2) were collected. Measurements of heart rate (HR), mean arterial pressure (MAP), and EIT recordings were conducted simultaneously at T0, T1, and T2.

Results

After prone positioning, PaO2/FiO2 increased significantly [T0 vs T1 vs T2: (173.17±17.73) mmHg vs (257.05±57.39) mmHg vs (299.03±71.18) mmHg, F=15.270, P<0.001]. Additionally, there was an increase in the proportion of dorsal ventilation after PPV [T0 vs T1 vs T2: (39.87±18.74) % vs (62.20±18.70)% vs (51.40±18.43)%, F=9.340, P=0.001]. The minute ventilation (MV) was significantly increased [T0 vs T1 vs T2: (8.14±2.38) L/min vs (8.89±1.29) L/min vs (11.40±1.91) L/min, F=22.917, P<0.001, respectively]. Similarly, respiratory compliance (Crs) showed a substantial improvement at different time points [T0 vs T1 vs T2: (27.63±7.50) ml/cmH2O vs (30.60±7.40) ml/cmH2O vs (31.53±8.29)ml/cmH2O, F=3.582, P=0.041, respectively]. The ventilation-perfusion matching showed a substantial improvement after PP compared to before PP [T0 vs T1: (66.67±12.81)% vs (78.24±10.60)%, P=0.03].

Conclusion

PP improves the uniformity of ventilation distribution and ventilation-perfusion matching in patients with COVID-19 ARDS.

表1 15例接受PP治疗的新冠病毒感染ARDS患者一般资料统计
表2 PP在不同时段对患者氧合和血流动力学稳定性的影响(
图1 EIT四分法区域划分(以通气图像为例)。图a~c分别为T0、T1、T2,且由上到下(腹侧到背侧)依次为ROI 1、2、3、4
图2 68岁男性新冠病毒感染ARDS患者PP后EIT监测下肺部的通气血流图像。图a为通气分布;图b为血流分布;图c为通气-血流匹配图像;黄色为通气区域,蓝色为血流灌注区域,叠加区域即为通气-血流匹配区域 注:ARDS为急性呼吸窘迫综合征;EIT为电阻抗断层成像
图3 68岁男性新冠病毒感染重症肺炎ARDS患者肺部CT图像。图a、b分别为PP前(T0)、后(T2)肺部CT图像,厚度为1.5 mm,红色箭头显示CT密度改变的区域 注:ARDS为急性呼吸窘迫综合征
表3 EIT监测下患者PP不同时段肺部通气分布的变化(%,
1
Pelosi P, Tubiolo D, Mascheroni D, et al. Effects of the prone position on respiratory mechanics and gas exchange during acute lung injury [J]. Am J Respir Crit Care Med, 1998, 157(2): 387-393.
2
Kallet RH. A comprehensive review of prone position in ARDS [J]. Respir Care, 2015, 60(11): 1660-1687.
3
Guérin C, Reignier J, Richard JC, et al. Prone positioning in severe acute respiratory distress syndrome [J]. N Engl J Med, 2013, 368(23): 2159-2168.
4
Papazian L, Aubron C, Brochard L, et al. Formal guidelines: management of acute respiratory distress syndrome [J]. Ann Intensive Care, 2019, 9(1): 69.
5
Grifths MJD, McAuley DF, Perkins GD, et al. Guidelines on the management of acute respiratory distress syndrome [J]. BMJ Open Respir Res, 2019, 6(1): e000420.
6
Paul V, Patel S, Royse M, et al. Proning in non-intubated (PINI) in times of COVID-19: case series and a review [J]. J Intensive Care Med, 2020, 35(8): 818-824.
7
Benson AB, Albert RK. Prone positioning for acute respiratory distress syndrome [J]. Clin Chest Med, 2014, 35(4): 743-752.
8
Mentzelopoulos SD, Roussos C, Zakynthinos SG. Prone position reduces lung stress and strain in severe acute respiratory distress syndrome [J]. Eur Respir J, 2005, 25: 534-544.
9
Tang R, Huang Y, Chen Q, et al. Relationship between regional lung compliance and ventilation homogeneity in the supine and prone position [J]. Acta Anaesthesiol Scand, 2012, 56(9): 1191-1199.
10
Richard JC, Bregeon F, Costes N, et al. Effects of prone position and positive end‑expiratory pressure on lung perfusion and ventilation [J]. Crit Care Med, 2008, 36(8): 2373-2380.
11
Frerichs I, Amato MBP, Van Kaam AH, et al. Chest electrical impedance tomography examination, data analysis, terminology, clinical use and recommendations: consensus statement of the translational EIT development study group [J]. Thorax, 2017, 72(1): 83-93.
12
曲志华, 代萌, 吴佳铭, 等. 机械通气下肺血流灌注状况的电阻抗断层成像评估新方法研究 [J]. 中国医疗设备, 2019, 34(1): 6-9, 17.
13
Spinelli E, Kircher M, Stender B, et al. Unmatched ventilation and perfusion measured by electrical impedance tomography predicts the outcome of ARDS [J]. Crit Care, 2021, 25(1): 192.
14
Bernard GR, Artigas A, Brigham KL, et al; The American‑European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination [J]. Am J Respir Crit Care Med, 1994, 149(3 Pt 1): 818-824.
15
Zhao Z, Moller K, Steinmann D, et al. Evaluation of an electrical impedance tomography-based global inhomogeneity index for pulmonary ventilation distribution [J]. Intensive Care Med, 2009, 35(11): 1900-1906.
16
Muders T, Luepschen H, Zinserling J, et al. Tidal recruitment assessed by electrical impedance tomography and computed tomography in a porcine model of lung injury [J]. Crit Care Med, 2012, 40(3): 903-911.
17
Wrigge H, Zinserling J, Muders T, et al. Electrical impedance tomography compared with thoracic computed tomography during a slow inflation maneuver in experimental models of lung injury [J]. Crit Care Med, 2008, 36(3): 903-909.
18
He H, Long Y, Frerichs I, et al. Detection of acute pulmonary embolism by electrical impedance tomography and saline bolus injection [J]. Am J Respir Crit Care Med, 2020, 202(6): 881-882.
19
He H, Chi Y, Long Y, et al. Bedside evaluation of pulmonary embolism by saline contrast electrical impedance tomography method: a prospective observational study [J]. Am J Respir Crit Care Med, 2020, 202(10): 1464-1468.
20
Guérin C, Albert RK, Beitler J, et al. Prone position in ARDS patients: why, when, how and for whom [J]. Intensive Care Med, 2020, 46(12): 2385-2396.
21
Chiumello D, Marino A, Brioni M, et al. Lung recruitment assessed by respiratory mechanics and computed tomography in patients with acute respiratory distress syndrome. What is the relationship? [J]. Am J Respir Crit Care Med, 2016, 193(11): 1254-1263.
22
Mentzelopoulos SD, Roussos C, Zakynthinos SG. Prone position reduces lung stress and strain in severe acute respiratory distress syndrome [J]. EurRespirJ, 2005, 25(3): 534-544.
23
Galiatsou E, Kostanti E, Svarna E, et al. Prone position augments recruitment and prevents alveolar overinflation in acute lung injury [J]. Amer J Respir Crit Care Med, 2006, 174(2): 187-197.
24
Gattinoni L, Pelosi P, Vitale G, et al. Body position changes redistribute lung computed-tomographic density in patients with acute respiratory failure [J]. Anesthesiology, 1991, 74(1): 15-23.
25
Perchiazzi G, Rylander C, Vena A, et al. Lung regional stress and strain as a function of posture and ventilatory mode [J]. J Appl Physiol (1985), 2011, 110: 1374-1383.
26
胡绘, 杨蓓, 罗振钊, 等. 肺部CT密度和血清半乳凝素9联合检测在评估老年隐源性机化性肺炎预后的临床价值 [J]. 贵州医药, 2018, 42(7): 878-880.
27
Zarantonello F, Andreatta G, Sella N, et al. Prone position and lung ventilation and perfusion matching in acute respiratory failure due to COVID-19 [J]. Amer J Respir Crit Care Med, 2020, 202(2): 278-279.
28
Wang YX, Zhong M, Dong MH, et al. Prone positioning improves ventilation-perfusion matching assessed by electrical impedance tomography in patients with ARDS: a prospective physiological study [J]. Crit Care, 2022, 26(1): 154.
[1] 钱雅君, 虞竹溪, 徐颖, 董丹江, 顾勤. 危重型新型冠状病毒感染合并侵袭性肺曲霉病的临床特征和高危因素分析[J]. 中华危重症医学杂志(电子版), 2024, 17(01): 3-9.
[2] 董道然, 宗媛, 王艳, 荆程桥, 任嘉伟. 右心保护性通气策略在急性呼吸窘迫综合征患者中的应用:一项前瞻性随机对照研究[J]. 中华危重症医学杂志(电子版), 2023, 16(06): 461-468.
[3] 李安琪, 徐祎琳, 向天新. 新型冠状病毒感染后肺纤维化病变诊治进展[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(05): 294-298.
[4] 刘路浩, 张鹏, 陈荣鑫, 郭予和, 尹威, 徐璐, 李光辉, 方佳丽, 马俊杰, 陈正. 奈玛特韦/利托那韦治疗肾移植术后重型新型冠状病毒肺炎的临床效果分析[J]. 中华移植杂志(电子版), 2023, 17(06): 349-353.
[5] 李晓宇, 许昕, 谌诚, 张萌, 韩文科, 林健. 肾移植受者新型冠状病毒感染合并肺炎支原体感染临床特点及诊疗分析[J]. 中华移植杂志(电子版), 2023, 17(06): 354-357.
[6] 庞丹, 孙刚, 伊乐, 丁立云, 钟美艳, 张杰, 于婷婷, 郭乐峰. 血清HIF-1α、VEGF、Flt-1的检测对ARDS的预后及临床意义[J]. 中华肺部疾病杂志(电子版), 2024, 17(01): 127-130.
[7] 刘珂, 张婧娴, 王如刚. 肺超声纹理特征ARDS与心源性肺水肿的鉴别诊断意义[J]. 中华肺部疾病杂志(电子版), 2023, 16(06): 892-894.
[8] 罗婷, 张实. 5种生物标志物对ARDS预后的预测分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 471-475.
[9] 李金璞, 饶向荣. 抗病毒药物和急性肾损伤[J]. 中华肾病研究电子杂志, 2023, 12(05): 287-290.
[10] 李浩南, 张煜彭, 付焱, 冯继伟, 刘凯, 张文凯. 缝隙连接蛋白43在肺部疾病中的研究进展[J]. 中华重症医学电子杂志, 2024, 10(01): 60-65.
[11] 卢梦诗, 刘威, 马加威, 嵇丹丹, 贾璇, 詹心萍, 罗亮. 人工智能在急性呼吸窘迫综合征领域的应用进展[J]. 中华重症医学电子杂志, 2024, 10(01): 66-71.
[12] 陈含冰, 储翠林, 邱海波. 急性呼吸窘迫综合征中巨噬细胞死亡方式的研究进展[J]. 中华重症医学电子杂志, 2024, 10(01): 79-84.
[13] 倪世豪, 董晓明, 刘浩辉, 何星灵, 刘东华, 李姿儒, 李思静, 姜艳辉, 黄婕, 张小娇, 鲁路, 杨忠奇. 治疗新型冠状病毒感染中成药的临床证据分析[J]. 中华临床医师杂志(电子版), 2023, 17(12): 1253-1269.
[14] 计超, 向群. 乙酰胆碱受体对急性呼吸窘迫综合征小鼠T细胞亚群和炎症因子的影响[J]. 中华诊断学电子杂志, 2024, 12(01): 50-56.
[15] 田丹阳, 刘小璇, 叶珊, 马新然, 樊东升, 傅瑜. 新型冠状病毒感染疫情对神经内科住院医师规范化培训的影响[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 499-504.
阅读次数
全文


摘要