1 |
Bachmann MC, Morais C, Bugedo G, et al. Electrical impedance tomography in acute respiratory distress syndrome [J]. Crit Care, 2018, 22(1): 263.
|
2 |
Costa EL, Lima RG, Amato MB. Electrical impedance tomography [J]. Curr Opin Crit Care, 2009, 15(1): 18-24.
|
3 |
Brown BH. Electrical impedance tomography (EIT): a review [J]. J Med Eng Technol, 2003, 27(3): 97-108.
|
4 |
Gattinoni L, Caironi P, Cressoni M, et al. Lung recruitment in patients with the acute respiratory distress syndrome [J]. N Engl J Med, 2006, 354(17): 1775-1786.
|
5 |
Hinz J, Hahn G, Neumann P, et al. End-expiratory lung impedance change enables bedside monitoring of end-expiratory lung volume change [J]. Intens Care Med, 2003, 29(1): 37-43.
|
6 |
Zhao Z, Möller K, Steinmann D, et al. Evaluation of an electrical impedance tomography-based Global Inhomogeneity Index for pulmonary ventilation distribution [J]. Intens Care Med, 2009, 35(11): 1900-1906.
|
7 |
Bikker I G, Leonhardt S, Reis Miranda D, et al. Bedside measurement of changes in lung impedance to monitor alveolar ventilation in dependent and non-dependent parts by electrical impedance tomography during a positive end-expiratory pressure trial in mechanically ventilated intensive care unit patients [J]. Crit Care, 2010, 14(3): R100.
|
8 |
Yun L, He HW, Möller K, et al. Assessment of lung recruitment by electrical impedance tomography and oxygenation in ARDS patients [J]. Medicine, 2016, 95(22): e3820.
|
9 |
Zhao Z, Sang L, Li Y, et al. Identification of lung overdistension caused by tidal volume and positive end-expiratory pressure increases based on electrical impedance tomography [J]. Br J Anaesth, 2021, 126(5): e167-e70.
|
10 |
Mauri T, Eronia N, Turrini C, et al. Bedside assessment of the effects of positive end-expiratory pressure on lung inflation and recruitment by the helium dilution technique and electrical impedance tomography [J]. Intens Care Med, 2016, 42(10): 1576-1587.
|
11 |
Meyer NJ, Gattinoni L, Calfee CS. Acute respiratory distress syndrome [J]. Lancet, 2021, 398(10300): 622-637.
|
12 |
Costa ELV, Borges JB, Melo A, et al. Bedside estimation of recruitable alveolar collapse and hyperdistension by electrical impedance tomography [J]. Intens Care Med, 2009, 35(6): 1132-1137.
|
13 |
Zhao Z, Möller K, Steinmann D, et al. Evaluation of an electrical impedance tomography-based Global Inhomogeneity Index for pulmonary ventilation distribution [J]. Intens Care Med, 2009, 35(11): 1900-6.
|
14 |
Hsu HJ, Chang HT, Zhao Z, et al. Positive end-expiratory pressure titration with electrical impedance tomography and pressure-volume curve: a randomized trial in moderate to severe ARDS [J]. Physiol Meas, 2021, 42(1): 014002.
|
15 |
He H, Chi Y, Yang Y, et al. Early individualized positive end-expiratory pressure guided by electrical impedance tomography in acute respiratory distress syndrome: a randomized controlled clinical trial [J]. Crit Care, 2021, 25(1): 230.
|
16 |
Hsu HJ, Chang HT, Zhao Z, et al. Positive end-expiratory pressure titration with electrical impedance tomography and pressure-volume curve: a randomized trial in moderate to severe ARDS [J]. Physiol Meas, 2021, 42(1): 014002.
|
17 |
Mauri T, Bellani G, Salerno D, et al. Regional distribution of air trapping in chronic obstructive pulmonary disease [J]. Am J Respir Crit Care Med, 2013, 188(12): 1466-1467.
|
18 |
He H, Yuan S, Yi C, et al. Titration of extra-PEEP against intrinsic-PEEP in severe asthma by electrical impedance tomography: a case report and literature review [J]. Medicine, 2020, 99(26): e20891.
|
19 |
Lee DH, Kim EY, Seo GJ, et al. Global and regional ventilation during high flow nasal cannula in patients with hypoxia [J]. Acute Crit Care, 2018, 33(1).
|
20 |
Zhang R, He H, Yun L, et al. Effect of postextubation high-flow nasal cannula therapy on lung recruitment and overdistension in high-risk patient [J]. Crit Care, 2020, 24(1): 82.
|
21 |
Matsuda W. Is the effect of a high-flow nasal cannula after extubation evaluated by electrical impedance tomography applicable to clinical practice? [J]. Crit Care, 2020, 24(1): 184.
|
22 |
Papazian L, Aubron C, Brochard L, et al. Formal guidelines: management of acute respiratory distress syndrome [J]. Ann Intensive Care, 2019, 9(1): 69.
|
23 |
Guérin C, Reignier J, Richard JC, et al. Prone positioning in severe acute respiratory distress syndrome [J]. N Engl J Med, 2013, 368(23): 2159-2168.
|
24 |
Albert RK, Keniston A, Baboi L, et al. Prone position-induced improvement in gas exchange does not predict improved survival in the acute respiratory distress syndrome [J]. Am J Respir Crit Care Med, 2014, 189(4): 494-496.
|
25 |
Guérin C, Albert RK, Beitler J, et al. Prone position in ARDS patients: why, when, how and for whom [J]. Intens Care Med, 2020, 46(12): 2385-2396.
|
26 |
Dalla Corte F, Mauri T, Spinelli E, et al. Dynamic bedside assessment of the physiologic effects of prone position in acute respiratory distress syndrome patients by electrical impedance tomography [J]. Minerva Anestesiol, 2020, 86(10): 1057-1064.
|
27 |
Tomasino S, Sassanelli R, Marescalco C, et al. Electrical impedance tomography and prone position during ventilation in COVID-19 pneumonia: case reports and a brief literature review [J]. Semin Cardiothorac Vasc Anesth, 2020, 24(4): 287-292.
|
28 |
Franchineau G, Bréchot N, Hekimian G, et al. Prone positioning monitored by electrical impedance tomography in patients with severe acute respiratory distress syndrome on veno-venous ECMO [J]. Ann Intensive Care, 2020, 10(1): 12.
|
29 |
Katira BH, Osada K, Engelberts D, et al. Positive end-expiratory pressure, pleural pressure, and regional compliance during pronation: an experimental study [J]. Am J Respir Crit Care Med, 2021, 203(10): 1266-1274.
|
30 |
Kotani T, Tanabe H, Yusa H, et al. Electrical impedance tomography-guided prone positioning in a patient with acute cor pulmonale associated with severe acute respiratory distress syndrome [J]. J Anesth, 2016, 30(1): 161-165.
|
31 |
Scaramuzzo G, Spadaro S, Dalla Corte F, et al. Personalized positive end-expiratory pressure in acute respiratory distress syndrome: comparison between optimal distribution of regional ventilation and positive transpulmonary pressure [J]. Crit Care Med, 2020, 48(8): 1148-1156.
|
32 |
Yoshida T, Torsani V, Gomes S, et al. Spontaneous effort causes occult pendelluft during mechanical ventilation [J]. Am J Respir Crit Care Med, 2013, 188(12): 1420-1427.
|
33 |
Rossi FS, Costa ELV, Iope DDM, et al. Pendelluft detection using electrical impedance tomography in an infant. Keep those images in mind [J]. Am J Respir Crit Care Med, 2019, 200(11): 1427-1429.
|
34 |
Santini A, Mauri T, Dalla Corte F, et al. Effects of inspiratory flow on lung stress, pendelluft, and ventilation heterogeneity in ARDS: a physiological study [J]. Crit Care, 2019, 23(1): 369.
|
35 |
Sang L, Zhao Z, Yun PJ, et al. Qualitative and quantitative assessment of pendelluft: a simple method based on electrical impedance tomography [J]. AnnTransl Med, 2020, 8(19): 1216.
|
36 |
Zhao Z, Peng SY, Chang MY, et al. Spontaneous breathing trials after prolonged mechanical ventilation monitored by electrical impedance tomography: an observational study [J]. Acta Anaesthesiol Scand, 2017, 61(9): 1166-1175.
|
37 |
Lima JNG, Fontes MS, Szmuszkowicz T, et al. Electrical impedance tomography monitoring during spontaneous breathing trial: Physiological description and potential clinical utility [J]. Acta Anaesthesiol Scand, 2019, 63(8): 1019-1027.
|
38 |
Coppadoro A, Grassi A, Giovannoni C, et al. Occurrence of pendelluft under pressure support ventilation in patients who failed a spontaneous breathing trial: an observational study [J]. Ann Intensive Care, 2020, 10(1): 39.
|
39 |
Briel M, Meade M, Mercat A, et al. Higher vs lower positive end-expiratory pressure in patients with acute lung injury and acute respiratory distress syndrome: systematic review and meta-analysis [J]. JAMA, 2010, 303(9): 865-873.
|
40 |
Costa ELV, Chaves CN, Gomes S, et al. Real-time detection of pneumothorax using electrical impedance tomography [J]. Crit Care Med, 2008, 36(4): 1230-1238.
|
41 |
Miedema M, Frerichs I, De Jongh FHC, et al. Pneumothorax in a preterm infant monitored by electrical impedance tomography: a case report [J]. Neonatology, 2011, 99(1): 10-13.
|
42 |
Kallio M, Rahtu M, Van Kaam AH, et al. Electrical impedance tomography reveals pathophysiology of neonatal pneumothorax during NAVA [J]. Clin Case Rep, 2020, 8(8): 1574-1578.
|
43 |
Corley A, Spooner AJ, Barnett AG, et al. End-expiratory lung volume recovers more slowly after closed endotracheal suctioning than after open suctioning: a randomized crossover study [J]. J Crit Care, 2012, 27(6): 742.e1-.e7.
|
44 |
Yuan S, Chi Y, Long Y, et al. Effect of position change from the bed to a wheelchair on the regional ventilation distribution assessed by electrical impedance tomography in patients with respiratory failure [J]. Front Med (Lausanne), 2021, 8: 744958.
|
45 |
He H, Chi Y, Long Y, et al. Bedside evaluation of pulmonary embolism by saline contrast electrical impedance tomography method: a prospective observational study [J]. Am J Respir Crit Care Med, 2020, 202(10): 1464-1468.
|
46 |
中国卫生信息与健康医疗大数据学会重症医学分会标准委员会, 北京肿瘤学会重症医学专业委员会, 中国重症肺电阻抗工作组. 肺电阻抗成像技术在重症呼吸管理中的临床应用中国专家共识 [J]. 中华医学杂志, 2022, 102(9): 14.
|