切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2023, Vol. 09 ›› Issue (01) : 35 -39. doi: 10.3877/cma.j.issn.2096-1537.2023.01.007

专题笔谈

电阻抗断层成像监测俯卧位通气的发展现状
王晶晶1, 谢晖1, 王瑞兰1,()   
  1. 1. 201620 上海,上海市第一人民医院 上海交通大学附属第一人民医院急诊危重病科
  • 收稿日期:2023-01-14 出版日期:2023-02-28
  • 通信作者: 王瑞兰
  • 基金资助:
    上海申康医院发展中心临床三年行动计划资助项目(SHDC2020CR2013A,SHDC2020CR5010-003)

Development status of electrical impedance tomography for monitoring prone position ventilation

Jingjing Wang1, Hui Xie1, Ruilan Wang1,()   

  1. 1. Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 201620, China
  • Received:2023-01-14 Published:2023-02-28
  • Corresponding author: Ruilan Wang
引用本文:

王晶晶, 谢晖, 王瑞兰. 电阻抗断层成像监测俯卧位通气的发展现状[J]. 中华重症医学电子杂志, 2023, 09(01): 35-39.

Jingjing Wang, Hui Xie, Ruilan Wang. Development status of electrical impedance tomography for monitoring prone position ventilation[J]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2023, 09(01): 35-39.

俯卧位通气(PP)是治疗急性呼吸窘迫综合征(ARDS)重要的呼吸支持手段,现已有大量的临床研究表明:PP能改善ARDS患者的预后。PP能改善氧合、进而降低病死率,主要是由于俯卧位后能改善患者病变肺组织通气-血流比。电阻抗断层成像技术(EIT)的技术特点使其能对俯卧位患者进行床旁监测,可动态观察俯卧位时肺通气、肺血流灌注的变化,进而判断PP的效果,从而指导临床治疗。本文通过对EIT技术以及临床应用,尤其是其在PP中的应用研究进行综述,旨在提高对EIT监测技术的认识,更好地理解PP改善氧合的呼吸生理学机制,促进EIT技术在PP中更高效精准的应用。

Prone positioning (PP) is an important means of respiratory support in the treatment of acute respiratory distress syndrome (ARDS). The prognosis of ARDS patients can be improved by PP according to a large number of clinical trials. PP can increase oxygenation, thereby reducing mortality, which resulted in improved ventilation-perfusion matching and oxygenation. Electrical impedance tomography (EIT) can provide real-time visualization of lung ventilation in patients at the bedside. EIT is an ideal tool for the dynamic assessment of pulmonary physiological changes, especially for regional ventilation-perfusion matching and ventilation, so as to guide clinical treatment. The purpose of this article is to improve the understanding of EIT and the respiratory physiological mechanisms of PP in improving oxygenation. Accordingly it will facilitate the more efficient and accurate application of EIT in PP.

1
Frerichs I, Amato MBP, Van Kaam AH, et al. Chest electrical impedance tomography examination, data analysis, terminology, clinical use and recommendations: consensus statement of the translational EIT development study group [J]. Thorax, 2017, 72(1): 83-93.
2
Frerichs I, Hahn G, Golisch W, et al. Monitoring perioperative changes in distribution of pulmonary ventilation by functional electrical impedance tomography [J]. Acta Anaesthesiologica Scandinavica, 1998, 42(6): 721-726.
3
Zhao Z, Moller K, Steinmann D, et al. Evaluation of an electrical impedance tomography-based Global Inhomogeneity Index for pulmonary ventilation distribution [J]. Intensive Care Med, 2009, 35(11): 1900-1906.
4
Lasarow L, Vogt B, Zhao Z, et al. Regional lung function measures determined by electrical impedance tomography during repetitive ventilation manoeuvres in patients with COPD [J]. Physiol Meas, 2021, 42(1): 015008.
5
Zhao Z, Chang MY, Frerichs I, et al. Regional air trapping in acute exacerbation of obstructive lung diseases measured with electrical impedance tomography: a feasibility study [J]. Minerva Anestesiologica, 2020, 86(2): 172-180.
6
Becher TH, Bui S, Zick G, et al. Assessment of respiratory system compliance with electrical impedance tomography using a positive end-expiratory pressure wave maneuver during pressure support ventilation: a pilot clinical study [J]. Crit Care, 2014, 18(6): 679.
7
Scaramuzzo G, Spinelli E, Spadaro S, et al. Gravitational distribution of regional opening and closing pressures, hysteresis and atelectrauma in ARDS evaluated by electrical impedance tomography [J]. Crit Care, 2020, 24(1): 622.
8
Victorino JA, Borges JB, Okamoto VN, et al. Imbalances in regional lung ventilation: a validation study on electrical impedance tomography [J]. Am J Respir Crit Care Med, 2004, 169(7): 791-800.
9
Muders T, Luepschen H, Zinserling J, et al. Tidal recruitment assessed by electrical impedance tomography and computed tomography in a porcine model of lung injury [J]. Crit Care Med, 2012, 40(3): 903-911.
10
Wrigge H, Zinserling J, Muders T, et al. Electrical impedance tomography compared with thoracic computed tomography during a slow inflation maneuver in experimental models of lung injury [J]. Crit Care Med, 2008, 36(3): 903-909.
11
Barber DC, Brown BH. Applied potential tomography [J]. J Br Interplanet Soc, 1989, 42(7): 391-393.
12
Victorino JA, Borges JB, Okamoto VN, et al. Imbalances in regional lung ventilation: a validation study on electrical impedance tomography [J]. Am J Respir Crit Care Med, 2004, 169(7): 791-800.
13
曲志华, 代萌, 吴佳铭, 等. 机械通气下肺血流灌注状况的电阻抗断层成像评估新方法研究 [J]. 中国医疗设备, 2019, 34(1): 6-9,17.
14
Frerichs I, Hinz J, Herrmann P, et al. Regional lung perfusion as determined by electrical impedance tomography in comparison with electron beam CT imaging [J]. IEEE Trans Med Imaging, 2002, 21(6): 646-652.
15
Borges JB, Suarez-Sipmann F, Bohm SH, et al. Regional lung perfusion estimated by electrical impedance tomography in a piglet model of lung collapse [J]. J Appl Physiol (1985), 2012, 112(1): 225-236.
16
Nguyen DT, Bhaskaran A, Chik W, et al. Perfusion redistribution after a pulmonary-embolism-like event with contrast enhanced EIT [J]. Physiol Meas, 2015, 36(6): 1297-1309.
17
Kircher M, Elke G, Stender B, et al. Regional lung perfusion analysis in experimental ARDS by electrical impedance and computed tomography [J]. IEEE Trans Med Imaging, 2021, 40(1): 251-261.
18
He H, Long Y, Frerichs I, et al. Detection of acute pulmonary embolism by electrical impedance tomography and saline bolus injection [J]. Am J Respir Crit Care Med, 2020, 202(6): 881-882.
19
He H, Chi Y, Long Y, et al. Bedside evaluation of pulmonary embolism by saline contrast electrical impedance tomography method: a prospective observational study [J]. Am J Respir Crit Care Med, 2020, 202(10): 1464-1468.
20
Mauri T, Spinelli E, Scotti E, et al. Potential for lung recruitment and ventilation-perfusion mismatch in patients with the acute respiratory distress syndrome from coronavirus disease 2019 [J]. Crit Care Med, 2020, 48(8): 1129-1134.
21
He H, Long Y, Chi Y, et al. Reply to Wang and Zhong: bedside evaluation of pulmonary embolism by saline contrast-enhanced electrical impedance tomography: considerations for future research [J]. Am J Respir Crit Care Med, 2021, 203(3): 395-397.
22
Wang Y, Zhong M. Bedside evaluation of pulmonary embolism by saline contrast-enhanced electrical impedance tomography: considerations for future research [J]. Am J Respir Crit Care Med, 2021, 203(3): 394-395.
23
Guérin C, Reignier J, Richard JC, et al; PROSEVA Study Group. Prone positioning in severe acute respiratory distress syndrome [J]. N Engl J Med, 2013, 368(23): 2159-2168.
24
Mancebo J, Fernandez R, Blanch L, et al. A multicenter trial of prolonged prone ventilation in severe acute respiratory distress syndrome [J]. Am J Respir Crit Care Med, 2006, 173(11): 1233-1239.
25
Galiatsou E, Kostanti E, Svarna E, et al. Prone position augments recruitment and prevents alveolar overinflation in acute lung injury [J]. Am J Respir Crit Care Med, 2006, 174(2): 187-197.
26
Gattinoni L, Pelosi P, Vitale G, et al. Body position changes redistribute lung computed-tomographic density in patients with acute respiratory failure [J]. Anesthesiology, 1991, 74(1): 15-23.
27
Chiumello D, Coppola S, Froio S. Prone position in ARDS: a simple maneuver still underused [J]. Intensive Care Med, 2018, 44(2): 241-243.
28
Frerichs I, Hahn G, Hellige G. Gravity-dependent phenomena in lung ventilation determined by functional EIT [J]. Physiol Meas, 1996, 17 (Suppl 4A): A149-A157.
29
Frerichs I. Electrical impedance tomography (EIT) in applications related to lung and ventilation: a review of experimental and clinical activities [J]. Physiol Meas, 2000, 21(2): R1-21.
30
Frerichs I, Hahn G, Schiffmann H, et al. Monitoring regional lung ventilation by functional electrical impedance tomography during assisted ventilation [J]. Ann N Y Acad Sci, 1999, 873: 493-505.
31
Riedel T, Richards T, Schibler A. The value of electrical impedance tomography in assessing the effect of body position and positive airway pressures on regional lung ventilation in spontaneously breathing subjects [J]. Intensive Care Med, 2005, 31(11): 1522-1528.
32
Chiumello D, Marino A, Brioni M, et al. Lung recruitment assessed by respiratory mechanics and computed tomography in patients with acute respiratory distress syndrome. What is the relationship? [J]. Am J Respir Crit Care Med, 2016, 193(11): 1254-1263.
33
Gattinoni L, Taccone P, Carlesso E, et al. Prone position in acute respiratory distress syndrome. Rationale, indications, and limits [J]. Am J Respir Crit Care Med, 2013, 188(11): 1286-1293.
34
Abroug F, Ouanes-Besbes L, Elatrous S, et al. The effect of prone positioning in acute respiratory distress syndrome or acute lung injury: a meta-analysis. Areas of uncertainty and recommendations for research [J]. Intensive Care Med, 2008, 34(6): 1002-1011.
35
Albert RK, Keniston A, Baboi L, et al. Prone position-induced improvement in gas exchange does not predict improved survival in the acute respiratory distress syndrome [J]. Am J Respir Crit Care Med, 2014, 189(4): 494-496.
36
Guerin C, Baboi L, Richard JC. Mechanisms of the effects of prone positioning in acute respiratory distress syndrome [J]. Intensive Care Med, 2014, 40(11): 1634-1642.
37
Dalla Corte F, Mauri T, Spinelli E, et al. Dynamic bedside assessment of the physiologic effects of prone position in acute respiratory distress syndrome patients by electrical impedance tomography [J]. Minerva Anestesiol, 2020, 86(10): 1057-1064.
38
Zarantonello F, Andreatta G, Sella N, et al. Prone position and lung ventilation and perfusion matching in acute respiratory failure due to COVID-19 [J]. Am J Respir Crit Care Med, 2020, 202(2): 278-279.
39
Wang YX, Zhong M, Dong MH, et al. Prone positioning improves ventilation-perfusion matching assessed by electrical impedance tomography in patients with ARDS: a prospective physiological study [J]. Crit Care, 2022, 26(1): 154.
40
Coppo A, Bellani G, Winterton D, et al. Feasibility and physiological effects of prone positioning in non-intubated patients with acute respiratory failure due to COVID-19 (PRON-COVID): a prospective cohort study [J]. Lancet Respir Med, 2020, 8(8): 765-774.
41
Ehrmann S, Li J, Ibarra-Estrada M, et al. Awake prone positioning for COVID-19 acute hypoxaemic respiratory failure: a randomised, controlled, multinational, open-label meta-trial [J]. Lancet Respir Med, 2021, 9(12): 1387-1395.
[1] 童洪杰, 陈琨, 潘飞艳, 倪红英. 俯卧位通气对静脉-静脉体外膜肺氧合支持的急性呼吸窘迫综合征患者病死率影响的Meta分析[J]. 中华危重症医学杂志(电子版), 2022, 15(04): 312-317.
[2] 杨茂宪, 施云超, 朱建刚, 沈鹏, 王海波, 宋先斌, 许鹏程, 赵文静. 俯卧位通气对肺内源性急性肺损伤大鼠的影响[J]. 中华危重症医学杂志(电子版), 2016, 09(01): 9-13.
[3] 饶林静, 罗皓梨, 钟山. 不同时长PPV在体外循环心脏大血管术后并发ARDS中的临床应用[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 575-577.
[4] 董红雪, 沈玥, 鲁静, 帅维正, 高苗莉, 陶莎. 俯卧位机械通气在慢性阻塞性肺疾病急性加重期的临床应用[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 263-265.
[5] 陶莎, 鲁静, 沈玥, 帅维正, 王振华. 俯卧位无创机械通气治疗AECOPD的临床分析[J]. 中华肺部疾病杂志(电子版), 2022, 15(06): 792-795.
[6] 冯芸, 刘娟, 周圣哲, 程绩. 俯卧位通气时间对急性呼吸窘迫综合征病死率影响的Meta分析[J]. 中华肺部疾病杂志(电子版), 2020, 13(04): 524-526.
[7] 尹承芬, 徐磊. 再议俯卧位通气的时机[J]. 中华重症医学电子杂志, 2023, 09(01): 9-13.
[8] 吴晓燕, 杨志祥, 於江泉, 郑瑞强. 扬州地区老年COVID-19患者临床特征分析及俯卧位通气疗效评价[J]. 中华重症医学电子杂志, 2022, 08(03): 216-222.
[9] 池熠, 何怀武, 隆云. 重症患者呼吸钟摆现象的研究进展[J]. 中华重症医学电子杂志, 2022, 08(01): 62-66.
[10] 周润奭, 隆云, 李尊柱, 李奇, 韩伟, 袁思依, 杨玉洁. EIT监测ARDS脱机困难患者早期活动过程中肺部通气变化[J]. 中华重症医学电子杂志, 2021, 07(04): 319-325.
[11] 刘孟春, 邢金燕. 电阻抗断层成像技术在呼吸系统肺功能成像中的应用[J]. 中华重症医学电子杂志, 2019, 05(04): 373-378.
[12] 谢碧芳, 蒋文, 潘洁仪, 何为群, 刘晓青, 徐远达. 急性呼吸窘迫综合征患者俯卧位通气时肠内营养的回顾性分析[J]. 中华重症医学电子杂志, 2018, 04(03): 262-267.
阅读次数
全文


摘要