切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2023, Vol. 09 ›› Issue (01) : 40 -45. doi: 10.3877/cma.j.issn.2096-1537.2023.01.008

专题笔谈

体外二氧化碳清除技术的重症应用场景
夏金根1,(), 胡诗雨1   
  1. 1. 100029 北京,中日友好医院呼吸与危重症医学科 国家呼吸医学中心 中国医学科学院呼吸病学研究院 国家呼吸疾病临床医学研究中心
  • 收稿日期:2022-11-22 出版日期:2023-02-28
  • 通信作者: 夏金根
  • 基金资助:
    “十四五”国家重点研发计划课题(2022YFC2504401)

Application scenario of extracorporeal carbon dioxide removal technology in Intensive Care Unit

Jingen Xia1,(), Shiyu Hu1   

  1. 1. Department of Respiratory and Critical Care Medicine, China-Japan Friendship Hospital, National Center for Respiratory Medicine, Institute of Respiratory Diseases, Chinese Academy of Medical Sciences, National Clinical Medical Research Center for Respiratory Diseases, Beijing 100029, China
  • Received:2022-11-22 Published:2023-02-28
  • Corresponding author: Jingen Xia
引用本文:

夏金根, 胡诗雨. 体外二氧化碳清除技术的重症应用场景[J]. 中华重症医学电子杂志, 2023, 09(01): 40-45.

Jingen Xia, Shiyu Hu. Application scenario of extracorporeal carbon dioxide removal technology in Intensive Care Unit[J]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2023, 09(01): 40-45.

体外二氧化碳清除(ECCO2R)是一种体外生命支持技术,通过体外膜肺(“人工肺”)清除机体过多产生的二氧化碳(CO2),以降低患者通气需求和呼吸机支持水平。随着体外生命支持相关技术的改进和临床经验的增多,最近研究提示ECCO2R在多种重症场景中具有重要的潜在价值,但亟待大样本临床研究进一步规范其临床指征及其床旁管理。本文通过文献复习和笔者经验,综述了ECCO2R在急性呼吸窘迫综合征(ARDS)、慢性阻塞性肺疾病急性加重(AECOPD)、肺移植围术期和哮喘持续状态等重症应用场景中的应用价值,以期为ECCO2R在重症场景中的应用提供更多参考。

Extracorporeal carbon dioxide removal (ECCO2R) is an extracorporeal life support technology, designed to remove excessive carbon dioxide generated by the body through extracorporeal membrane lung ("artificial lung"), thus reducing patients' ventilatory demand and ventilator support level. With the improvement of related extracorporeal life support technologies and the accumulation of clinical experience, recent studies have suggested that ECCO2R has important potential value in a variety of clinical scenarios. However, it is still imperative but it is urgent to further standardize its clinical indications and bedside management through large sample clinical studies. This article reviewed the application value of ECCO2R in severe application scenarios, such as acute respiratory distress syndrome (ARDS), acute exacerbation of chronic obstructive pulmonary disease (AECOPD), perioperative period of lung transplantation, and persistent status of asthma, so as to provide more reference for the application of ECCO2R in severe clinical scenarios.

表1 ECMO与ECCO2R的优劣势对比
1
Gattinoni L, Agostoni A, Pesenti A, et al. Treatment of acute respiratory failure with low-frequency positive-pressure ventilation and extracorporeal removal of CO2 [J]. Lancet, 1980, 2(8189): 292-294.
2
Morris AH, Wallace CJ, Menlove RL, et al. Randomized clinical trial of pressure-controlled inverse ratio ventilation and extracorporeal CO2 removal for adult respiratory distress syndrome [J]. Am J Respir Crit Care Med, 1994, 149(2 Pt 1): 295-305.
3
Combes A, Auzinger G, Capellier G, et al. ECCO2R therapy in the ICU: consensus of a European round table meeting [J]. Crit Care, 2020, 24(1): 490.
4
Boyle AJ, Sklar MC, McNamee JJ, et al. Extracorporeal carbon dioxide removal for lowering the risk of mechanical ventilation: research questions and clinical potential for the future [J]. Lancet Respir Med, 2018, 6(11): 874-884.
5
Cove ME, MacLaren G, Federspiel WJ, et al. Bench to bedside review: Extracorporeal carbon dioxide removal, past present and future [J]. Crit Care, 2012, 16(5): 232.
6
Staudinger T. Update on extracorporeal carbon dioxide removal: a comprehensive review on principles, indications, efficiency, and complications [J]. Perfusion, 2020, 35(6): 492-508.
7
Combes A, Brodie D, Aissaoui N, et al. Extracorporeal carbon dioxide removal for acute respiratory failure: a review of potential indications, clinical practice and open research questions [J]. Intensive Care Med, 2022, 48(10): 1308-1321.
8
Karagiannidis C, Philipp A, Strassmann S, et al. Extracorporeal CO2 Elimination (ECCO2R) for Hypercapnic Respiratory Failure: From Pathophysiology to Clinical Application [J]. Pneumologie, 2017, 71(4): 215-220.
9
Schmidt M, Tachon G, Devilliers C, et al. Blood oxygenation and decarboxylation determinants during venovenous ECMO for respiratory failure in adults [J]. Intensive Care Med, 2013, 39(5): 838-846.
10
中华医学会呼吸病学分会呼吸危重症医学学组. 急性呼吸窘迫综合征患者机械通气指南 (试行) [J]. 中华医学杂志, 2016, 96(6): 404-424.
11
Gorman EA, O'Kane CM, McAuley DF. Acute respiratory distress syndrome in adults: diagnosis, outcomes, long-term sequelae, and management [J]. Lancet, 2022, 400(10358): 1157-1170.
12
Terragni PP, Rosboch G, Tealdi A, et al. Tidal hyperinflation during low tidal volume ventilation in acute respiratory distress syndrome [J]. Am J Respir Crit Care Med, 2007, 175(2): 160-166.
13
Hager DN, Krishnan JA, Hayden DL, et al. Tidal volume reduction in patients with acute lung injury when plateau pressures are not high [J]. Am J Respir Crit Care Med, 2005, 172(10): 1241-1245.
14
Rozencwajg S, Guihot A, Franchineau G, et al. Ultra-protective ventilation reduces biotrauma in patients on venovenous extracorporeal membrane oxygenation for severe acute respiratory distress syndrome [J]. Crit Care Med, 2019, 47(11): 1505-1512.
15
Schmidt M, Pham T, Arcadipane A, et al. Mechanical ventilation management during extracorporeal membrane oxygenation for acute respiratory distress syndrome. an international multicenter prospective cohort [J]. Am J Respir Crit Care Med, 2019, 200(8): 1002-1012.
16
Terragni PP, Del SL, Mascia L, et al. Tidal volume lower than 6 ml/kg enhances lung protection: role of extracorporeal carbon dioxide removal [J]. Anesthesiology, 2009, 111(4): 826-835.
17
Bein T, Weber-Carstens S, Goldmann A, et al. Lower tidal volume strategy (≈3 ml/kg) combined with extracorporeal CO2 removal versus 'conventional' protective ventilation (6 ml/kg) in severe ARDS: the prospective randomized Xtravent-study [J]. Intensive Care Med, 2013, 39(5): 847-856.
18
Combes A, Fanelli V, Pham T, et al. Feasibility and safety of extracorporeal CO2 removal to enhance protective ventilation in acute respiratory distress syndrome: the SUPERNOVA study [J]. Intensive Care Med, 2019, 45(5): 592-600.
19
McNamee JJ, Gillies MA, Barrett NA, et al. Effect of lower tidal volume ventilation facilitated by extracorporeal carbon dioxide removal vs standard care ventilation on 90-day mortality in patients with acute hypoxemic respiratory failure: the REST randomized clinical trial [J]. JAMA, 2021, 326(11): 1013-1023.
20
Boyle AJ, McDowell C, Agus A, et al. Acute hypoxaemic respiratory failure after treatment with lower tidal volume ventilation facilitated by extracorporeal carbon dioxide removal: long-term outcomes from the REST randomised trial [J]. Thorax, 2022, 5: thoraxjnl-2022-218874.
21
Abrams D, Schmidt M, Pham T, et al. Mechanical ventilation for acute respiratory distress syndrome during extracorporeal life support. Research and practice [J]. Am J Respir Crit Care Med, 2020, 201(5): 514-525.
22
Vos T, Lim SS, Abbafati C, et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019 [J]. Lancet, 2020, 396(10258): 1204-1222.
23
Organization WH. The top 10 causes of death [EB/OL]. (2020-09) [2022-09].

URL    
24
中华医学会重症医学分会. 慢性阻塞性肺疾病急性加重患者的机械通气指南(2007) [J]. 中国危重病急救医学, 2007, 19(9): 513-518.
25
Rochwerg B, Brochard L, Elliott MW, et al. Official ERS/ATS clinical practice guidelines: noninvasive ventilation for acute respiratory failure [J]. Eur Respir J, 2017, 50(2): 1602426.
26
Patil SP, Krishnan JA, Lechtzin N, et al. In-hospital mortality following acute exacerbations of chronic obstructive pulmonary disease [J]. Arch Intern Med, 2003, 163(10): 1180-1186.
27
Demoule A, Girou E, Richard JC, et al. Benefits and risks of success or failure of noninvasive ventilation [J]. Intensive Care Med, 2006, 32(11): 1756-1765.
28
D'Andrea A, Banfi C, Bendjelid K, et al. Utilisation de l'épuration extra-corporelle de dioxyde de carbone dans l'exacerbation de la maladie pulmonaire obstructive chronique: une revue narrative [J]. Can J Anaesth, 2020, 67(4): 462-474.
29
Combes A, Brodie D, Aissaoui N, et al. Extracorporeal carbon dioxide removal for acute respiratory failure: a review of potential indications, clinical practice and open research questions [J]. Intensive Care Med, 2022, 48(10): 1308-1321.
30
Boyle AJ, Sklar MC, McNamee JJ, et al. Extracorporeal carbon dioxide removal for lowering the risk of mechanical ventilation: research questions and clinical potential for the future [J]. Lancet Respir Med, 2018, 6(11): 874-884.
31
Morales-Quinteros L, Del SL, Artigas A. Extracorporeal carbon dioxide removal for acute hypercapnic respiratory failure [J]. Ann Intensive Care, 2019, 9(1): 79.
32
Kluge S, Braune SA, Engel M, et al. Avoiding invasive mechanical ventilation by extracorporeal carbon dioxide removal in patients failing noninvasive ventilation [J]. Intensive Care Med, 2012, 38(10): 1632-1639.
33
Del SL, Pisani L, Filippini C, et al. Extracorporeal CO2 removal in hypercapnic patients at risk of noninvasive ventilation failure: a matched cohort study with historical control [J]. Crit Care Med, 2015, 43(1): 120-127.
34
Braune S, Sieweke A, Brettner F, et al. The feasibility and safety of extracorporeal carbon dioxide removal to avoid intubation in patients with COPD unresponsive to noninvasive ventilation for acute hypercapnic respiratory failure (ECLAIR study): multicentre case-control study [J]. Intensive Care Med, 2016, 42(9): 1437-1444.
35
Cardenas VJ, Lynch JE, Ates R, et al. Venovenous carbon dioxide removal in chronic obstructive pulmonary disease: experience in one patient [J]. ASAIO J, 2009, 55(4): 420-422.
36
Abrams DC, Brenner K, Burkart KM, et al. Pilot study of extracorporeal carbon dioxide removal to facilitate extubation and ambulation in exacerbations of chronic obstructive pulmonary disease [J]. Ann Am Thorac Soc, 2013, 10(4): 307-314.
37
Burki NK, Mani RK, Herth F, et al. A novel extracorporeal CO2 removal system: results of a pilot study of hypercapnic respiratory failure in patients with COPD [J]. Chest, 2013, 143(3): 678-686.
38
Pisani L, Polastri M, Pacilli A, et al. Extracorporeal Lung Support for Hypercapnic Ventilatory Failure [J]. Respir Care, 2018, 63(9): 1174-1179.
39
Bartosik W, Egan JJ, Wood AE. The Novalung interventional lung assist as bridge to lung transplantation for self-ventilating patients - initial experience [J]. Interact Cardiovasc Thorac Surg, 2011, 13(2): 198-200.
40
Ricci D, Boffini M, Del SL, et al. The use of CO2 removal devices in patients awaiting lung transplantation: an initial experience [J]. Transplant Proc, 2010, 42(4): 1255-1258.
41
Schellongowski P, Riss K, Staudinger T, et al. Extracorporeal CO2 removal as bridge to lung transplantation in life-threatening hypercapnia [J]. Transpl Int, 2015, 28(3): 297-304.
42
Mascia L, Pasero D, Slutsky AS, et al. Effect of a lung protective strategy for organ donors on eligibility and availability of lungs for transplantation: a randomized controlled trial [J]. JAMA, 2010, 304(23): 2620-2627.
43
Lucangelo U, Del SL, Boffini M, et al. Protective ventilation for lung transplantation [J]. Curr Opin Anaesthesiol, 2012, 25(2): 170-174.
44
Christie JD, Sager JS, Kimmel SE, et al. Impact of primary graft failure on outcomes following lung transplantation [J]. Chest, 2005, 127(1): 161-165.
45
Ruberto F, Bergantino B, Testa M C, et al. Low-flow venovenous CO₂ removal in association with lung protective ventilation strategy in patients who develop severe progressive respiratory acidosis after lung transplantation [J]. Transplant Proc, 2013, 45(7): 2741-2745.
46
Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention [EB/OL]. (2022-07-01) [2022-11-22].

URL    
47
Laher AE, Buchanan SK. Mechanically Ventilating the Severe Asthmatic [J]. J Intensive Care Med, 2018, 33(9): 491-501.
48
Bromberger BJ, Agerstrand C, Abrams D, et al. Extracorporeal Carbon Dioxide Removal in the Treatment of Status Asthmaticus [J]. Crit Care Med, 2020, 48(12): e1226-e1231.
[1] 中华医学会器官移植学分会肺移植学组, 国家肺移植质控中心. 新型冠状病毒感染肺移植受者选择中国专家建议[J]. 中华移植杂志(电子版), 2023, 17(01): 13-16.
[2] 李伟, 卓剑, 黄川, 黄有攀. Lac、HO-1、sRAGE、CRP/ALB表达及脓毒症并发ARDS危险因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 514-516.
[3] 罗婷, 张实. 5种生物标志物对ARDS预后的预测分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 471-475.
[4] 饶林静, 罗皓梨, 钟山. 不同时长PPV在体外循环心脏大血管术后并发ARDS中的临床应用[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 575-577.
[5] 胡宗俊, 陈建国, 黄霞. ARDS机械通气继发肺栓塞危险因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 388-390.
[6] 张松涛, 李世金, 凌霄, 吴文辉. 胸部物理治疗联合布地奈德雾化对多发伤患者并发ARDS的临床分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 373-375.
[7] 谭林, 蒲运刚, 朱顺, 杨希. 急性呼吸窘迫综合征患者血清FGF21、ANGPTL4、HO-1表达及其临床意义[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 227-229.
[8] 马娟娟, 陈雪玲, 王蕾. ARDS患者救治中有创呼吸机辅助呼吸的临床干预及疗效分析[J]. 中华肺部疾病杂志(电子版), 2022, 15(06): 876-878.
[9] 胡宗俊, 岳希, 黄霞. 肺段肺复张对急性呼吸窘迫综合征患者预后的影响[J]. 中华肺部疾病杂志(电子版), 2022, 15(06): 796-800.
[10] 殷昌斌, 张健平, 任慧, 王慧英. HMGB1、IL-1β在大面积烧伤患者中表达意义及其对并发急性呼吸窘迫综合征的预测意义[J]. 中华肺部疾病杂志(电子版), 2022, 15(05): 688-690.
[11] 陈蕊, 杨洪娜, 方巍, 李鑫鑫, 李甜甜, 于孝义, 王艳雪, 李文玉. 血清与支气管肺泡灌洗液中细胞因子水平与肺内外ARDS的相关性研究[J]. 中华重症医学电子杂志, 2023, 09(03): 251-258.
[12] 吴梅清, 林瑾, 段美丽, 薛晓艳. 高密度脂蛋白水平对脓毒症相关的ARDS发生的影响[J]. 中华重症医学电子杂志, 2023, 09(02): 191-197.
[13] 尹承芬, 徐磊. 再议俯卧位通气的时机[J]. 中华重症医学电子杂志, 2023, 09(01): 9-13.
[14] 陈栋玉, 潘纯, 杨毅. ARDS患者自主呼吸努力评估方法的研究进展[J]. 中华重症医学电子杂志, 2023, 09(01): 84-88.
[15] 王洁琼, 王慧霞, 赵慧颖, 安友仲. 血管紧张素转换酶2对人肺微血管内皮细胞炎性损伤的调控作用[J]. 中华重症医学电子杂志, 2023, 09(01): 78-83.
阅读次数
全文


摘要