切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2023, Vol. 09 ›› Issue (01) : 84 -88. doi: 10.3877/cma.j.issn.2096-1537.2023.01.014

综述

ARDS患者自主呼吸努力评估方法的研究进展
陈栋玉1, 潘纯2, 杨毅2,()   
  1. 1. 210009 南京,江苏省重症医学重点实验室 东南大学附属中大医院重症医学科;224000 江苏盐城,盐城市第一人民医院重症医学科
    2. 210009 南京,江苏省重症医学重点实验室 东南大学附属中大医院重症医学科
  • 收稿日期:2022-03-18 出版日期:2023-02-28
  • 通信作者: 杨毅
  • 基金资助:
    国家自然科学基金面上项目(81971888); 东南大学附属中大医院院管课题(ZD2021057)

Techniques to monitor respiratory effort in acute respiratory distress syndrome

Dongyu Chen1, Chun Pan2, Yi Yang2,()   

  1. 1. Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China; Department of Critical Care Medicine, Yancheng First People's Hospital, Yancheng 224000, China
    2. Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
  • Received:2022-03-18 Published:2023-02-28
  • Corresponding author: Yi Yang
引用本文:

陈栋玉, 潘纯, 杨毅. ARDS患者自主呼吸努力评估方法的研究进展[J/OL]. 中华重症医学电子杂志, 2023, 09(01): 84-88.

Dongyu Chen, Chun Pan, Yi Yang. Techniques to monitor respiratory effort in acute respiratory distress syndrome[J/OL]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2023, 09(01): 84-88.

自主呼吸的保留对于不同严重程度的急性呼吸窘迫综合征(ARDS)患者具有不同的意义,呼吸努力的监测是实施安全可靠的自主呼吸的关键。本文就自主呼吸的利与弊展开讨论,并对以通气反应指标、气道压力变化、胸腔内压变化、膈肌功能为导向的自主呼吸努力监测方法做一综述,建议临床医师在管理ARDS患者时,常规对自主呼吸努力进行监测,并在需要时采取干预措施,以免加重肺损伤。

The preservation of spontaneous breathing has different meanings for patients with different severity of acute respiratory distress syndrome (ARDS). Respiratory effort monitoring is the key to the implementation of safe and reliable spontaneous breathing. We discussed the advantages and disadvantages of spontaneous respiration and reviewed the monitoring methods of spontaneous breathing efforts guided by ventilatory response indicators, airway pressure changes, intra-thoracic pressure changes, and diaphragm function in this manuscript. It is recommended for clinicians to monitor the respiratory effort that guided the intervention to avoid aggravating lung injury in ARDS management.

1
Bellani G, Laffey JG, Pham T, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries [J]. JAMA, 2016, 315(8): 788-800.
2
Liu L, Yang Y, Gao Z, et al. Practice of diagnosis and management of acute respiratory distress syndrome in mainland China: a cross sectional study [J]. J Thorac Dis, 2018, 10(9): 5394-5404.
3
de Vries H, Jonkman A, Shi ZH, et al. Assessing breathing effort in mechanical ventilation: physiology and clinical implications [J]. Ann Transl Med, 2018, 6(19): 387.
4
Yoshida T, Uchiyama A, Matsuura N, et al. Spontaneous breathing during lung-protective ventilation in an experimental acute lung injury model: high transpulmonary pressure associated with strong spontaneous breathing effort may worsen lung injury [J]. Crit Care Med, 2012, 40(5): 1578-1585.
5
Yoshida T, Torsani V, Gomes S, et al. Spontaneous effort causes occult pendelluft during mechanical ventilation [J]. Am J Respir Crit Care Med, 2013, 188(12):1420-1427.
6
Yoshida T, Nakahashi S, Nakamura MAM, et al. Volume-controlled ventilation does not prevent injurious inflation during spontaneous effort [J]. Am J Respir Crit Care Med, 2017, 196(5): 590-601.
7
Wrigge H, Zinserling J, Neumann P, et al. Spontaneous breathing improves lung aeration in oleic acid-induced lung injury [J]. Anesthesiology, 2003, 99(2): 376-384.
8
Gama de AM, Guldner A, Pelosi P. Spontaneous breathing activity in acute lung injury and acute respiratory distress syndrome [J]. Curr Opin Anaesthesiol, 2012, 25(2): 148-155.
9
Wrigge H, Zinserling J, Neumann P, et al. Spontaneous breathing with airway pressure release ventilation favors ventilation in dependent lung regions and counters cyclic alveolar collapse in oleic-acid-induced lung injury: a randomized controlled computed tomography trial [J]. Crit Care, 2005, 9(6): R780-R789.
10
Mascheroni D, Kolobow T, Fumagalli R, et al. Acute respiratory failure following pharmacologically induced hyperventilation: an experimental animal study [J]. Intensive Care Med, 1988, 15: 8-14.
11
Brochard L, Slutsky A, Pesenti A. Mechanical ventilation to minimize progression of lung injury in acute respiratory failure [J]. Am J Respir Crit Care Med, 2017, 195: 438-442.
12
Yoshida T, Grieco DL, Brochard L, et al. Patient self-inflicted lung injury and positive end-expiratory pressure for safe spontaneous breathing [J]. Curr Opin Crit Care, 2020, 26(1): 59-65.
13
Cruces P, Retamal J, Hurtado DE, et al. A physiological approach to understand the role of respiratory effort in the progression of lung injury in SARS-CoV-2 infection [J]. Crit Care, 2020, 24(1): 494.
14
Carteaux G, Parfait M, Combet M, et al. Patient-self inflicted lung injury: a practical review [J]. J Clin Med, 2021, 10(12): 2738.
15
Demoule A, Molinari N, Jung B, et al. Patterns of diaphragm function in critically ill patients receiving prolonged mechanical ventilation:a prospective longitudinal study [J]. Ann Intensive Care, 2016, 6(1) :75-77.
16
Goligher EC, Fan E, Herridge MS, et al. Evolution of diaphragm thickness during mechanical ventilation. Impact of inspiratory effort [J]. Am J Respir Crit Care Med, 2015, 192(9): 1080-1088.
17
Aliverti A, Cala SJ, Duranti R, et al. Human respiratory muscle actions and control during exercise [J]. J Appl Physiol, 1997, 83(4): 1256-1269.
18
Cohen CA, Zagelbaum G, Gross D, et al. Clinical manifestations of inspiratory muscle fatigue [J]. Am J Med, 1982, 73(3): 308-316.
19
Carteaux G, Millán-Guilarte T, De Prost N, et al. Failure of noninvasive ventilation for de novo acute hypoxemic respiratory failure: role of tidal volume [J]. Crit Care Med, 2016, 44(2): 282-290.
20
Frat JP, Ragot S, Coudroy R, et al. Predictors of intubation in patients with acute hypoxemic respiratory failure treated with a noninvasive oxygenation strategy [J]. Crit Care Med, 2018, 46(2): 208-215.
21
Costa R, Navalesi P, Cammarota G, et al. Remifentanil effects on respiratory drive and timing during pressure support ventilation and neurally adjusted ventilatory assist [J]. Respir Physiol Neurobiol, 2017, 244: 10-16.
22
Brabrand M, Hallas P, Folkestad L, et al. Measurement of respiratory rate by multiple raters in a clinical setting is unreliable: A cross-sectional simulation study [J]. J Crit Care, 2018, 44: 404-406.
23
Berg KM, Lang GR, Salciccioli JD, et al. The rapid shallow breathing index as a predictor of failure of noninvasive ventilation for patients with acute respiratory failure [J]. Respir Care, 2012, 57(10): 1548-1554.
24
Albani F, Pisani L, Ciabatti G, et al. Flow Index: a novel, non-invasive, continuous, quantitative method to evaluate patient inspiratory effort during pressure support ventilation [J]. Crit Care, 2021, 25(1): 196.
25
Amato MB, Meade MO, Slutsky AS, et al. Driving pressure and survival in the acute respiratory distress syndrome [J]. N Engl J Med, 2015, 372: 747-755.
26
Chiumello D, Carlesso E, Brioni M, et al. Airway driving pressure and lung stress in ARDS patients [J]. Crit Care, 2016, 20: 276.
27
Ladha K, Vidal MF, McLean DJ, et al. Intraoperative protective mechanical ventilation and risk of postoperative respiratory complications: hospital-based registry study [J]. BMJ, 2015, 351: h3646.
28
Neto AS, Hemmes SN, Barbas CS, et al. Association between driving pressure and development of postoperative pulmonary complications in patients undergoing mechanical ventilation for general anesthesia: a meta-analysis of individual patient data [J]. Lancet Respir Med, 2016, 4(4): 272-280.
29
Bellani G, Grassi A, Sosio S, et al. Plateau and driving pressure in the presence of spontaneous breathing [J]. Intensive Care Med, 2019, 45(1):97-98.
30
Bertoni M, Spadaro S, Goligher EC. Monitoring patient respiratory effort during mechanical ventilation: lung and diaphragm-protective ventilation [J]. Crit Care, 2020, 24(1): 106.
31
Vaporidi K, Psarologakis C, Proklou A, et al. Driving pressure during proportional assist ventilation: an observational study [J]. Ann Intensive Care, 2019, 9(1): 1.
32
Bertoni M, Telias I, Urner M, et al. A novel non-invasive method to detect excessively high respiratory effort and dynamic transpulmonary driving pressure during mechanical ventilation [J]. Crit Care, 2019, 23(1): 346.
33
Chiumello D, Carlesso E, Cadringher P, et al. Lung stress and strain during mechanical ventilation for acute respiratory distress syndrome [J]. Am J Respir Crit Care Med, 2008, 178: 346-355.
34
Eichler L, Truskowska K, Dupree A, et al. Intraoperative ventilation of morbidly obese patients guided by transpulmonary pressure [J]. Obes Surg, 2018, 28: 122-129.
35
Fumagalli J, Berra L, Zhang C, et al. Transpulmonary pressure describes lung morphology during decremental positive end-expiratory pressure trials in obesity [J]. Crit Care Med, 2017, 45: 1374-1381.
36
Mauri T, Yoshida T, Bellani G, et al. Esophageal and transpulmonary pressure in the clinical setting: meaning, usefulness and perspectives [J]. Intensive Care Med, 2016, 42(9): 1360-1373.
37
Doorduin J, van Hees HW, van der Hoeven JG, et al. Monitoring of the respiratory muscles in the critically ill [J]. Am J Respir Crit Care Med, 2013, 187(1): 20-27.
38
Liu L, Liu H, Yang Y, et al. Neuroventilatory efficiency and extubation readiness in critically ill patients [J]. Crit Care, 2012, 16(4): R143.
39
Haaksma M, Tuinman PR, Heunks L. Ultrasound to assess diaphragmatic function in the critically ill-a critical perspective [J]. Ann Transl Med, 2017, 5(5): 114.
40
Vivier E, Mekontso Dessap A, Dimassi S, et al. Diaphragm ultrasonography to estimate the work of breathing during non-invasive ventilation [J]. Intensive Care Med, 2012, 38(5): 796-803.
41
Reardon PM, Wong J, Fitzpatrick A, et al. Diaphragm function in acute respiratory failure and the potential role of phrenic nerve stimulation [J]. Curr Opin Crit Care, 2021, 27(3): 282-289.
[1] 江雅婷, 刘林峰, 沈辰曦, 陈奔, 刘婷, 龚裕强. 组织相关巨噬素3 保护肺血管内皮糖萼治疗急性呼吸窘迫综合征的机制研究[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(05): 353-362.
[2] 李振翮, 魏长青, 甄国栋, 李振富. 脓毒症并发急性呼吸窘迫综合征患者血清S1P、Wnt5a变化及其临床意义[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 293-300.
[3] 杨茂宪, 沈鹏, 王倩倩, 吴旺, 沈永帅, 蒋禛, 徐龙生, 朱建刚, 刘倍倍. 吡啶甲酸镁联合地塞米松对急性呼吸窘迫综合征大鼠的治疗作用研究[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(03): 196-203.
[4] 李智, 冯芸. NF-κB 与MAPK 信号通路及其潜在治疗靶点在急性呼吸窘迫综合征中的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 840-843.
[5] 魏丁, 乔艳艳, 顾兴, 张燕, 李艳燕, 钱卫生, 潘蕾, 高永恒, 金发光. 体外膜肺氧合救治急性呼吸窘迫综合征不良预后危险因素分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(03): 363-367.
[6] 杨东星, 沈鹏, 赵慧颖. 免疫球蛋白联合依库珠单抗治疗GBS 并发重度ARDS 患者一例[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 404-408.
[7] 王晓霞, 乌丹, 张江英, 乌雅罕, 郝颖楠, 斯日古楞. 《2023 年美国胸科学会关于成人急性呼吸窘迫综合征患者管理的临床实践指南更新》解读[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 338-343.
[8] 田学, 谢晖, 王瑞兰. 急性呼吸窘迫综合征相关肺纤维化的研究进展[J/OL]. 中华重症医学电子杂志, 2024, 10(03): 258-264.
[9] 李松栗, 黄蔚, 巢杰, 杨毅, 邱海波. 单核/巨噬细胞来源的细胞外囊泡在急性呼吸窘迫综合征中的研究进展[J/OL]. 中华重症医学电子杂志, 2024, 10(03): 253-257.
[10] 杨永红, 杨莹, 齐红蕾, 刘福瑞, 朱金源. 单细胞测序在急性呼吸窘迫综合征中的应用进展[J/OL]. 中华重症医学电子杂志, 2024, 10(03): 248-252.
[11] 倪韫晖, 杨毅, 袁雪燕, 邱海波. 胸壁加压在急性呼吸窘迫综合征中的应用和临床进展[J/OL]. 中华重症医学电子杂志, 2024, 10(03): 243-247.
[12] 刘悦, 潘纯. 急性呼吸窘迫综合征患者肌松剂滴定的必要性与可行性[J/OL]. 中华重症医学电子杂志, 2024, 10(02): 108-112.
[13] 王永广, 朱鹏, 许千金, 甘桂芬, 石钟山, 潘纯. 急性呼吸窘迫综合征诊断标准亟需更新[J/OL]. 中华重症医学电子杂志, 2024, 10(02): 113-117.
[14] 史楠, 袁雪燕, 邱海波. 肺复张在急性呼吸窘迫综合征中的应用和临床进展[J/OL]. 中华重症医学电子杂志, 2024, 10(02): 118-126.
[15] 孙藏岚, 黄丽丽, 李小雨, 邱海波. 脂质组学在急性呼吸窘迫综合征中的应用和临床进展[J/OL]. 中华重症医学电子杂志, 2024, 10(02): 127-135.
阅读次数
全文


摘要