切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2023, Vol. 09 ›› Issue (01) : 84 -88. doi: 10.3877/cma.j.issn.2096-1537.2023.01.014

综述

ARDS患者自主呼吸努力评估方法的研究进展
陈栋玉1, 潘纯2, 杨毅2,()   
  1. 1. 210009 南京,江苏省重症医学重点实验室 东南大学附属中大医院重症医学科;224000 江苏盐城,盐城市第一人民医院重症医学科
    2. 210009 南京,江苏省重症医学重点实验室 东南大学附属中大医院重症医学科
  • 收稿日期:2022-03-18 出版日期:2023-02-28
  • 通信作者: 杨毅
  • 基金资助:
    国家自然科学基金面上项目(81971888); 东南大学附属中大医院院管课题(ZD2021057)

Techniques to monitor respiratory effort in acute respiratory distress syndrome

Dongyu Chen1, Chun Pan2, Yi Yang2,()   

  1. 1. Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China; Department of Critical Care Medicine, Yancheng First People's Hospital, Yancheng 224000, China
    2. Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
  • Received:2022-03-18 Published:2023-02-28
  • Corresponding author: Yi Yang
引用本文:

陈栋玉, 潘纯, 杨毅. ARDS患者自主呼吸努力评估方法的研究进展[J]. 中华重症医学电子杂志, 2023, 09(01): 84-88.

Dongyu Chen, Chun Pan, Yi Yang. Techniques to monitor respiratory effort in acute respiratory distress syndrome[J]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2023, 09(01): 84-88.

自主呼吸的保留对于不同严重程度的急性呼吸窘迫综合征(ARDS)患者具有不同的意义,呼吸努力的监测是实施安全可靠的自主呼吸的关键。本文就自主呼吸的利与弊展开讨论,并对以通气反应指标、气道压力变化、胸腔内压变化、膈肌功能为导向的自主呼吸努力监测方法做一综述,建议临床医师在管理ARDS患者时,常规对自主呼吸努力进行监测,并在需要时采取干预措施,以免加重肺损伤。

The preservation of spontaneous breathing has different meanings for patients with different severity of acute respiratory distress syndrome (ARDS). Respiratory effort monitoring is the key to the implementation of safe and reliable spontaneous breathing. We discussed the advantages and disadvantages of spontaneous respiration and reviewed the monitoring methods of spontaneous breathing efforts guided by ventilatory response indicators, airway pressure changes, intra-thoracic pressure changes, and diaphragm function in this manuscript. It is recommended for clinicians to monitor the respiratory effort that guided the intervention to avoid aggravating lung injury in ARDS management.

1
Bellani G, Laffey JG, Pham T, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries [J]. JAMA, 2016, 315(8): 788-800.
2
Liu L, Yang Y, Gao Z, et al. Practice of diagnosis and management of acute respiratory distress syndrome in mainland China: a cross sectional study [J]. J Thorac Dis, 2018, 10(9): 5394-5404.
3
de Vries H, Jonkman A, Shi ZH, et al. Assessing breathing effort in mechanical ventilation: physiology and clinical implications [J]. Ann Transl Med, 2018, 6(19): 387.
4
Yoshida T, Uchiyama A, Matsuura N, et al. Spontaneous breathing during lung-protective ventilation in an experimental acute lung injury model: high transpulmonary pressure associated with strong spontaneous breathing effort may worsen lung injury [J]. Crit Care Med, 2012, 40(5): 1578-1585.
5
Yoshida T, Torsani V, Gomes S, et al. Spontaneous effort causes occult pendelluft during mechanical ventilation [J]. Am J Respir Crit Care Med, 2013, 188(12):1420-1427.
6
Yoshida T, Nakahashi S, Nakamura MAM, et al. Volume-controlled ventilation does not prevent injurious inflation during spontaneous effort [J]. Am J Respir Crit Care Med, 2017, 196(5): 590-601.
7
Wrigge H, Zinserling J, Neumann P, et al. Spontaneous breathing improves lung aeration in oleic acid-induced lung injury [J]. Anesthesiology, 2003, 99(2): 376-384.
8
Gama de AM, Guldner A, Pelosi P. Spontaneous breathing activity in acute lung injury and acute respiratory distress syndrome [J]. Curr Opin Anaesthesiol, 2012, 25(2): 148-155.
9
Wrigge H, Zinserling J, Neumann P, et al. Spontaneous breathing with airway pressure release ventilation favors ventilation in dependent lung regions and counters cyclic alveolar collapse in oleic-acid-induced lung injury: a randomized controlled computed tomography trial [J]. Crit Care, 2005, 9(6): R780-R789.
10
Mascheroni D, Kolobow T, Fumagalli R, et al. Acute respiratory failure following pharmacologically induced hyperventilation: an experimental animal study [J]. Intensive Care Med, 1988, 15: 8-14.
11
Brochard L, Slutsky A, Pesenti A. Mechanical ventilation to minimize progression of lung injury in acute respiratory failure [J]. Am J Respir Crit Care Med, 2017, 195: 438-442.
12
Yoshida T, Grieco DL, Brochard L, et al. Patient self-inflicted lung injury and positive end-expiratory pressure for safe spontaneous breathing [J]. Curr Opin Crit Care, 2020, 26(1): 59-65.
13
Cruces P, Retamal J, Hurtado DE, et al. A physiological approach to understand the role of respiratory effort in the progression of lung injury in SARS-CoV-2 infection [J]. Crit Care, 2020, 24(1): 494.
14
Carteaux G, Parfait M, Combet M, et al. Patient-self inflicted lung injury: a practical review [J]. J Clin Med, 2021, 10(12): 2738.
15
Demoule A, Molinari N, Jung B, et al. Patterns of diaphragm function in critically ill patients receiving prolonged mechanical ventilation:a prospective longitudinal study [J]. Ann Intensive Care, 2016, 6(1) :75-77.
16
Goligher EC, Fan E, Herridge MS, et al. Evolution of diaphragm thickness during mechanical ventilation. Impact of inspiratory effort [J]. Am J Respir Crit Care Med, 2015, 192(9): 1080-1088.
17
Aliverti A, Cala SJ, Duranti R, et al. Human respiratory muscle actions and control during exercise [J]. J Appl Physiol, 1997, 83(4): 1256-1269.
18
Cohen CA, Zagelbaum G, Gross D, et al. Clinical manifestations of inspiratory muscle fatigue [J]. Am J Med, 1982, 73(3): 308-316.
19
Carteaux G, Millán-Guilarte T, De Prost N, et al. Failure of noninvasive ventilation for de novo acute hypoxemic respiratory failure: role of tidal volume [J]. Crit Care Med, 2016, 44(2): 282-290.
20
Frat JP, Ragot S, Coudroy R, et al. Predictors of intubation in patients with acute hypoxemic respiratory failure treated with a noninvasive oxygenation strategy [J]. Crit Care Med, 2018, 46(2): 208-215.
21
Costa R, Navalesi P, Cammarota G, et al. Remifentanil effects on respiratory drive and timing during pressure support ventilation and neurally adjusted ventilatory assist [J]. Respir Physiol Neurobiol, 2017, 244: 10-16.
22
Brabrand M, Hallas P, Folkestad L, et al. Measurement of respiratory rate by multiple raters in a clinical setting is unreliable: A cross-sectional simulation study [J]. J Crit Care, 2018, 44: 404-406.
23
Berg KM, Lang GR, Salciccioli JD, et al. The rapid shallow breathing index as a predictor of failure of noninvasive ventilation for patients with acute respiratory failure [J]. Respir Care, 2012, 57(10): 1548-1554.
24
Albani F, Pisani L, Ciabatti G, et al. Flow Index: a novel, non-invasive, continuous, quantitative method to evaluate patient inspiratory effort during pressure support ventilation [J]. Crit Care, 2021, 25(1): 196.
25
Amato MB, Meade MO, Slutsky AS, et al. Driving pressure and survival in the acute respiratory distress syndrome [J]. N Engl J Med, 2015, 372: 747-755.
26
Chiumello D, Carlesso E, Brioni M, et al. Airway driving pressure and lung stress in ARDS patients [J]. Crit Care, 2016, 20: 276.
27
Ladha K, Vidal MF, McLean DJ, et al. Intraoperative protective mechanical ventilation and risk of postoperative respiratory complications: hospital-based registry study [J]. BMJ, 2015, 351: h3646.
28
Neto AS, Hemmes SN, Barbas CS, et al. Association between driving pressure and development of postoperative pulmonary complications in patients undergoing mechanical ventilation for general anesthesia: a meta-analysis of individual patient data [J]. Lancet Respir Med, 2016, 4(4): 272-280.
29
Bellani G, Grassi A, Sosio S, et al. Plateau and driving pressure in the presence of spontaneous breathing [J]. Intensive Care Med, 2019, 45(1):97-98.
30
Bertoni M, Spadaro S, Goligher EC. Monitoring patient respiratory effort during mechanical ventilation: lung and diaphragm-protective ventilation [J]. Crit Care, 2020, 24(1): 106.
31
Vaporidi K, Psarologakis C, Proklou A, et al. Driving pressure during proportional assist ventilation: an observational study [J]. Ann Intensive Care, 2019, 9(1): 1.
32
Bertoni M, Telias I, Urner M, et al. A novel non-invasive method to detect excessively high respiratory effort and dynamic transpulmonary driving pressure during mechanical ventilation [J]. Crit Care, 2019, 23(1): 346.
33
Chiumello D, Carlesso E, Cadringher P, et al. Lung stress and strain during mechanical ventilation for acute respiratory distress syndrome [J]. Am J Respir Crit Care Med, 2008, 178: 346-355.
34
Eichler L, Truskowska K, Dupree A, et al. Intraoperative ventilation of morbidly obese patients guided by transpulmonary pressure [J]. Obes Surg, 2018, 28: 122-129.
35
Fumagalli J, Berra L, Zhang C, et al. Transpulmonary pressure describes lung morphology during decremental positive end-expiratory pressure trials in obesity [J]. Crit Care Med, 2017, 45: 1374-1381.
36
Mauri T, Yoshida T, Bellani G, et al. Esophageal and transpulmonary pressure in the clinical setting: meaning, usefulness and perspectives [J]. Intensive Care Med, 2016, 42(9): 1360-1373.
37
Doorduin J, van Hees HW, van der Hoeven JG, et al. Monitoring of the respiratory muscles in the critically ill [J]. Am J Respir Crit Care Med, 2013, 187(1): 20-27.
38
Liu L, Liu H, Yang Y, et al. Neuroventilatory efficiency and extubation readiness in critically ill patients [J]. Crit Care, 2012, 16(4): R143.
39
Haaksma M, Tuinman PR, Heunks L. Ultrasound to assess diaphragmatic function in the critically ill-a critical perspective [J]. Ann Transl Med, 2017, 5(5): 114.
40
Vivier E, Mekontso Dessap A, Dimassi S, et al. Diaphragm ultrasonography to estimate the work of breathing during non-invasive ventilation [J]. Intensive Care Med, 2012, 38(5): 796-803.
41
Reardon PM, Wong J, Fitzpatrick A, et al. Diaphragm function in acute respiratory failure and the potential role of phrenic nerve stimulation [J]. Curr Opin Crit Care, 2021, 27(3): 282-289.
[1] 中华医学会器官移植学分会肺移植学组, 国家肺移植质控中心. 新型冠状病毒感染肺移植受者选择中国专家建议[J]. 中华移植杂志(电子版), 2023, 17(01): 13-16.
[2] 饶林静, 罗皓梨, 钟山. 不同时长PPV在体外循环心脏大血管术后并发ARDS中的临床应用[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 575-577.
[3] 李伟, 卓剑, 黄川, 黄有攀. Lac、HO-1、sRAGE、CRP/ALB表达及脓毒症并发ARDS危险因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 514-516.
[4] 罗婷, 张实. 5种生物标志物对ARDS预后的预测分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 471-475.
[5] 胡宗俊, 陈建国, 黄霞. ARDS机械通气继发肺栓塞危险因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 388-390.
[6] 张松涛, 李世金, 凌霄, 吴文辉. 胸部物理治疗联合布地奈德雾化对多发伤患者并发ARDS的临床分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 373-375.
[7] 林金锋, 张素燕, 田李均, 曹志龙, 徐俊贤, 韩旭东. 短暂呼气末阻塞法用于指导机械通气患者撤机的临床分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 266-268.
[8] 谭林, 蒲运刚, 朱顺, 杨希. 急性呼吸窘迫综合征患者血清FGF21、ANGPTL4、HO-1表达及其临床意义[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 227-229.
[9] 陈蕊, 杨洪娜, 方巍, 李鑫鑫, 李甜甜, 于孝义, 王艳雪, 李文玉. 血清与支气管肺泡灌洗液中细胞因子水平与肺内外ARDS的相关性研究[J]. 中华重症医学电子杂志, 2023, 09(03): 251-258.
[10] 吴梅清, 林瑾, 段美丽, 薛晓艳. 高密度脂蛋白水平对脓毒症相关的ARDS发生的影响[J]. 中华重症医学电子杂志, 2023, 09(02): 191-197.
[11] 朱秀芬, 韦碧琳, 郑慧芳, 丁林芳, 徐子萌, 余文轩, 原皓, 常泽楠, 黄志坤, 刘紫锰. T管与PSV自主呼吸试验对重症患者成功撤机后临床转归的影响——一项回顾性队列研究[J]. 中华重症医学电子杂志, 2023, 09(01): 54-61.
[12] 王洁琼, 王慧霞, 赵慧颖, 安友仲. 血管紧张素转换酶2对人肺微血管内皮细胞炎性损伤的调控作用[J]. 中华重症医学电子杂志, 2023, 09(01): 78-83.
[13] 夏金根, 胡诗雨. 体外二氧化碳清除技术的重症应用场景[J]. 中华重症医学电子杂志, 2023, 09(01): 40-45.
[14] 常炜, 刘玲. 呼吸驱动及呼吸努力床旁评估的研究进展[J]. 中华重症医学电子杂志, 2023, 09(01): 25-29.
[15] 尹承芬, 徐磊. 再议俯卧位通气的时机[J]. 中华重症医学电子杂志, 2023, 09(01): 9-13.
阅读次数
全文


摘要