切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2024, Vol. 10 ›› Issue (01) : 79 -84. doi: 10.3877/cma.j.issn.2096-1537.2024.01.013

综述

急性呼吸窘迫综合征中巨噬细胞死亡方式的研究进展
陈含冰1, 储翠林1, 邱海波1,()   
  1. 1. 210009 南京,江苏省重症医学重点实验室 东南大学附属中大医院重症医学科
  • 收稿日期:2022-07-17 出版日期:2024-02-28
  • 通信作者: 邱海波
  • 基金资助:
    国家自然科学基金重点项目(81930058); 江苏省重症医学重点实验室项目(BM2020004)

New insights in macrophage dying mechanisms in acute respiratory distress syndrome

Hanbing Chen1, Cuilin Chu1, Haibo Qiu1,()   

  1. 1. Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
  • Received:2022-07-17 Published:2024-02-28
  • Corresponding author: Haibo Qiu
引用本文:

陈含冰, 储翠林, 邱海波. 急性呼吸窘迫综合征中巨噬细胞死亡方式的研究进展[J]. 中华重症医学电子杂志, 2024, 10(01): 79-84.

Hanbing Chen, Cuilin Chu, Haibo Qiu. New insights in macrophage dying mechanisms in acute respiratory distress syndrome[J]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2024, 10(01): 79-84.

急性肺损伤/急性呼吸窘迫综合征(ALI/ARDS)的根本发病机制是各种因素引起的机体促炎和抗炎反应的失衡,从而导致炎症反应的失控,并引起一系列病理生理的改变。巨噬细胞可通过包括凋亡、自噬、焦亡、坏死等不同的死亡形式在肺部炎症的进展中发挥重要作用。探究巨噬细胞在ALI/ARDS中的具体死亡机制并寻找可用于药物治疗的潜在靶点对于ALI/ARDS的诊断和治疗具有重要意义。本文就关于ALI/ARDS中巨噬细胞的不同死亡方式进行综述,以期为ALI/ARDS开发新的治疗方式提供依据。

The fundamental pathogenesis of acute lung injury/acute respiratory distress syndrome (ALI/ARDS) lies in the imbalance between proinflammatory and anti-inflammatory responses caused by various etiology, which leads to uncontrolled inflammatory response and a series of pathophysiological changes. Macrophages play an important role in the progression of lung inflammation through different mechanism, including apoptosis, autophagy, pyroptosis, necrosis and so on. It is of great significance to explore specific mechanism of macrophages in ALI/ARDS and find potential targets for drug therapy. This article reviews such mechanisms in ALI/ARDS, in order to provide thoughts for development of new treatment for ALI/ARDS.

1
Matthay MA, Zemans RL, Zimmerman GA, et al. Acute respiratory distress syndrome [J]. Nat Rev Dis primers, 2019, 5(1): 18.
2
Bellani G, Laffey JG, Pham T, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries [J]. JAMA, 2016, 315(8): 788-800.
3
Angus DC, van der Poll T. Severe sepsis and septic shock [J]. N Engl J Med, 2013, 369(9): 840-851.
4
van der Poll T, van de Veerdonk FL, Scicluna BP, et al. The immunopathology of sepsis and potential therapeutic targets [J]. Nat Rev Immunol, 2017, 17(7): 407-420.
5
Li D, Ren W, Jiang Z, et al. Regulation of the NLRP3 inflammasome and macrophage pyroptosis by the p38 MAPK signaling pathway in a mouse model of acute lung injury [J]. Mol Med reports, 2018, 18(5): 4399-4409.
6
Robinson N, Ganesan R, Hegedűs C, et al. Programmed necrotic cell death of macrophages: focus on pyroptosis, necroptosis, and parthanatos [J]. Redox Biol, 2019, 26: 101239.
7
Fan EKY, Fan J. Regulation of alveolar macrophage death in acute lung inflammation [J]. Respir Res, 2018, 19(1): 50.
8
Wynn TA, Chawla A, Pollard JW. Macrophage biology in development, homeostasis and disease [J]. Nature, 2013, 496(7446): 445-455.
9
Shapouri-Moghaddam A, Mohammadian S, Vazini H, et al. Macrophage plasticity, polarization, and function in health and disease [J]. J Cell Physiol, 2018, 233(9): 6425-6440.
10
Wang K, Sun Q, Zhong X, et al. Structural mechanism for GSDMD targeting by autoprocessed caspases in pyroptosis [J]. Cell, 2020, 180(5): 941-955.e20.
11
Jorgensen I, Rayamajhi M, Miao EA. Programmed cell death as a defence against infection [J]. Nat Rev Immunol, 2017, 17(3): 151-164.
12
Medina CB, Mehrotra P, Arandjelovic S, et al. Metabolites released from apoptotic cells act as tissue messengers [J]. Nature, 2020, 580(7801): 130-135.
13
Suzanne M, Steller H. Shaping organisms with apoptosis [J]. Cell Death Differ, 2013, 20(5): 669-675.
14
Matute-Bello G, Liles WC, Radella F, et al. Neutrophil apoptosis in the acute respiratory distress syndrome [J]. Am J Respir Crit Care Med, 1997, 156(6): 1969-1977.
15
Rosseau S, Hammerl P, Maus U, et al. Phenotypic characterization of alveolar monocyte recruitment in acute respiratory distress syndrome [J]. Am J Physiol Lung Cell Mol Physiol, 2000, 279(1): L25-35.
16
Duffield JS, Forbes SJ, Constandinou CM, et al. Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair [J]. J Clin Invest, 2005, 115(1): 56-65.
17
Janssen WJ, Barthel L, Muldrow A, et al. Fas determines differential fates of resident and recruited macrophages during resolution of acute lung injury [J]. Am J Respir Crit Care Med, 2011, 184(5): 547-560.
18
Xiang SY, Ye Y, Yang Q, et al. RvD1 accelerates the resolution of inflammation by promoting apoptosis of the recruited macrophages via the ALX/FasL-FasR/caspase-3 signaling pathway [J]. Cell Death Discov, 2021, 7(1): 339.
19
Molaei E, Molaei A, Hayes AW, et al. Resolvin D1, therapeutic target in acute respiratory distress syndrome [J]. Eur J Pharmacol, 2021, 911: 174527.
20
Santambrogio L, Cuervo AM. Chasing the elusive mammalian microautophagy [J]. Autophagy, 2011, 7(6): 652-654.
21
Glick D, Barth S, Macleod KF. Autophagy: cellular and molecular mechanisms [J]. J Pathol, 2010, 221(1): 3-12.
22
Johansen T, Lamark T. Selective autophagy mediated by autophagic adapter proteins [J]. Autophagy, 2011, 7(3): 279-296.
23
Rubinsztein DC, Codogno P, Levine B. Autophagy modulation as a potential therapeutic target for diverse diseases [J]. Nat Rev Drug Discov, 2012, 11(9): 709-730.
24
Mizushima N, Levine B. Autophagy in human diseases [J]. N Engl J Med, 2020, 383(16): 1564-1576.
25
Fan T, Huang Z, Wang W, et al. Proteasome inhibition promotes autophagy and protects from endoplasmic reticulum stress in rat alveolar macrophages exposed to hypoxia-reoxygenation injury [J]. J Cell Physiol, 2018, 233(10): 6748-6758.
26
Wen Z, Fan L, Li Y, et al. Neutrophils counteract autophagy-mediated anti-inflammatory mechanisms in alveolar macrophage: role in posthemorrhagic shock acute lung inflammation [J]. J Immunol, 2014, 193(9): 4623-4633.
27
Jia X, Cao B, An Y, et al. Rapamycin ameliorates lipopolysaccharide-induced acute lung injury by inhibiting IL-1β and IL-18 production [J]. Int Immunopharmacol, 2019, 67: 211-219.
28
Fan T, Chen L, Huang Z, et al. Autophagy decreases alveolar macrophage apoptosis by attenuating endoplasmic reticulum stress and oxidative stress [J]. Oncotarget, 2016, 7(52): 87206-87218.
29
Sun L, Guo RF, Gao H, et al. Attenuation of IgG immune complex-induced acute lung injury by silencing C5aR in lung epithelial cells [J]. FASEB J, 2009, 23(11): 3808-3818.
30
Vercellotti GM, Moldow CF, Jacob HS. Complement, oxidants, and endothelial injury: how a bedside observation opened a door to vascular biology [J]. J Clin Invest, 2012, 122(9): 3044-3045.
31
Hu R, Chen ZF, Yan J, et al. Complement C5a exacerbates acute lung injury induced through autophagy-mediated alveolar macrophage apoptosis [J]. Cell Death Dis, 2014, 5(7): e1330.
32
Liu X, Gao C, Wang Y, et al. BMSC-derived exosomes ameliorate Lps-induced acute lung injury by miR-384-5p-controlled alveolar macrophage autophagy [J]. Oxid Med Cell Longev, 2021, 2021: 9973457.
33
Huang C, You Q, Xu J, et al. An mTOR siRNA-loaded spermidine/DNA tetrahedron nanoplatform with a synergistic anti-inflammatory effect on acute lung injury [J]. Adv Healthc Mater, 2022, 11(11): e2200008.
34
Shi J, Zhao Y, Wang K, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death [J]. Nature, 2015, 526(7575): 660-665.
35
Kayagaki N, Stowe IB, Lee BL, et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling [J]. Nature, 2015, 526(7575): 666-671.
36
Pinkerton JW, Kim RY, Robertson AAB, et al. Inflammasomes in the lung [J]. Mol Immunol, 2017, 86: 44-55.
37
Kovacs SB, Miao EA. Gasdermins: effectors of pyroptosis [J]. Trends Cell Biol, 2017, 27(9): 673-684.
38
Hammerschmidt S, Kuhn H, Grasenack T, et al. Apoptosis and necrosis induced by cyclic mechanical stretching in alveolar type Ⅱ cells [J]. Am J Respir Cell Mol Biol, 2004, 30(3): 396-402.
39
Pasparakis M, Vandenabeele P. Necroptosis and its role in inflammation [J]. Nature, 2015, 517(7534): 311-320.
40
Slutsky AS, Ranieri VM. Ventilator-induced lung injury [J]. N Engl J Med, 2013, 369(22): 2126-2136.
41
Dai M, Li Q, Pan P. The modulation of interferon regulatory factor-1 via caspase-1-mediated alveolar macrophage pyroptosis in ventilator-induced lung injury [J]. Mediators Inflamm, 2022, 2022: 1002582.
42
Qin X, Zhou Y, Jia C, et al. Caspase-1-mediated extracellular vesicles derived from pyroptotic alveolar macrophages promote inflammation in acute lung injury [J]. Int J Biol Sci, 2022, 18(4): 1521-1538.
43
Gou X, Xu W, Liu Y, et al. IL-6 prevents lung macrophage death and lung inflammation injury by inhibiting GSDME- and GSDMD-mediated pyroptosis during Pneumococcal pneumosepsis [J]. Microbiol Spectr, 2022, 10(2): e0204921.
44
Behar SM, Martin CJ, Booty MG, et al. Apoptosis is an innate defense function of macrophages against Mycobacterium tuberculosis [J]. Mucosal Immunol, 2011, 4(3): 279-287.
45
Chen GY, Nuñez G. Sterile inflammation: sensing and reacting to damage [J]. Nat Rev Immunol, 2010, 10(12): 826-837.
46
Dagvadorj J, Shimada K, Chen S, et al. Lipopolysaccharide induces alveolar macrophage necrosis via CD14 and the P2X7 receptor leading to interleukin-1α release [J]. Immunity, 2015, 42(4): 640-653.
47
Wang W, Zhu L, Li H, et al. Alveolar macrophage-derived exosomal tRF-22-8BWS7K092 activates Hippo signaling pathway to induce ferroptosis in acute lung injury [J]. Int Immunopharmacol, 2022, 107: 108690.
48
Tsvetkov P, Coy S, Petrova B, et al. Copper induces cell death by targeting lipoylated TCA cycle proteins [J]. Science, 2022, 375(6586): 1254-1261.
49
Linkermann A, Stockwell BR, Krautwald S, et al. Regulated cell death and inflammation: an auto-amplification loop causes organ failure [J]. Nat Rev Immunol, 2014, 14(11): 759-767.
[1] 董道然, 宗媛, 王艳, 荆程桥, 任嘉伟. 右心保护性通气策略在急性呼吸窘迫综合征患者中的应用:一项前瞻性随机对照研究[J]. 中华危重症医学杂志(电子版), 2023, 16(06): 461-468.
[2] 薛嘉怡, 王丽, 艾涛. 巨噬细胞在儿童肺炎支原体肺炎中作用机制的研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(06): 643-648.
[3] 林昌盛, 战军, 肖雪. 上皮性卵巢癌患者诊疗中基因检测及分子靶向药物治疗[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 505-510.
[4] 陆宜仙, 张震涛, 夏德萌, 王家林. 巨噬细胞极化在骨质疏松中调控作用及机制的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 538-541.
[5] 王鹏, 肖厚安, 贾赤宇. 不同因素调控巨噬细胞极化在慢性难愈性创面中的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 454-459.
[6] 曹飞, 庞俊. 前列腺癌免疫微环境中免疫抑制性细胞分类及其作用机制[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(02): 121-125.
[7] 黄艺承, 梁海祺, 何其焕, 韦发烨, 杨舒博, 谭舒婷, 翟高强, 程继文. 机器学习模型评估RAS亚家族基因对膀胱癌免疫治疗的作用[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(02): 131-140.
[8] 庞丹, 孙刚, 伊乐, 丁立云, 钟美艳, 张杰, 于婷婷, 郭乐峰. 血清HIF-1α、VEGF、Flt-1的检测对ARDS的预后及临床意义[J]. 中华肺部疾病杂志(电子版), 2024, 17(01): 127-130.
[9] 刘珂, 张婧娴, 王如刚. 肺超声纹理特征ARDS与心源性肺水肿的鉴别诊断意义[J]. 中华肺部疾病杂志(电子版), 2023, 16(06): 892-894.
[10] 王晶晶, 谢晖, 邓璞钰, 张晨晨, 田学, 谢云, 王瑞兰. 新型冠状病毒感染ARDS患者EIT监测下俯卧位通气成像的改变[J]. 中华重症医学电子杂志, 2024, 10(01): 31-37.
[11] 李浩南, 张煜彭, 付焱, 冯继伟, 刘凯, 张文凯. 缝隙连接蛋白43在肺部疾病中的研究进展[J]. 中华重症医学电子杂志, 2024, 10(01): 60-65.
[12] 卢梦诗, 刘威, 马加威, 嵇丹丹, 贾璇, 詹心萍, 罗亮. 人工智能在急性呼吸窘迫综合征领域的应用进展[J]. 中华重症医学电子杂志, 2024, 10(01): 66-71.
[13] 陈菁, 黄蔚, 邱海波. 细菌外膜囊泡在ARDS中的功能及机制研究进展[J]. 中华重症医学电子杂志, 2023, 09(04): 391-395.
[14] 符梅沙, 周玉华, 李慧, 薛春颜. 淋巴细胞免疫治疗对复发性流产患者外周血T淋巴细胞亚群分布与PD1/PD-L1表达的影响及意义[J]. 中华临床医师杂志(电子版), 2023, 17(06): 726-730.
[15] 计超, 向群. 乙酰胆碱受体对急性呼吸窘迫综合征小鼠T细胞亚群和炎症因子的影响[J]. 中华诊断学电子杂志, 2024, 12(01): 50-56.
阅读次数
全文


摘要