1 |
Matthay MA, Zemans RL, Zimmerman GA, et al. Acute respiratory distress syndrome [J]. Nat Rev Dis primers, 2019, 5(1): 18.
|
2 |
Bellani G, Laffey JG, Pham T, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries [J]. JAMA, 2016, 315(8): 788-800.
|
3 |
Angus DC, van der Poll T. Severe sepsis and septic shock [J]. N Engl J Med, 2013, 369(9): 840-851.
|
4 |
van der Poll T, van de Veerdonk FL, Scicluna BP, et al. The immunopathology of sepsis and potential therapeutic targets [J]. Nat Rev Immunol, 2017, 17(7): 407-420.
|
5 |
Li D, Ren W, Jiang Z, et al. Regulation of the NLRP3 inflammasome and macrophage pyroptosis by the p38 MAPK signaling pathway in a mouse model of acute lung injury [J]. Mol Med reports, 2018, 18(5): 4399-4409.
|
6 |
Robinson N, Ganesan R, Hegedűs C, et al. Programmed necrotic cell death of macrophages: focus on pyroptosis, necroptosis, and parthanatos [J]. Redox Biol, 2019, 26: 101239.
|
7 |
Fan EKY, Fan J. Regulation of alveolar macrophage death in acute lung inflammation [J]. Respir Res, 2018, 19(1): 50.
|
8 |
Wynn TA, Chawla A, Pollard JW. Macrophage biology in development, homeostasis and disease [J]. Nature, 2013, 496(7446): 445-455.
|
9 |
Shapouri-Moghaddam A, Mohammadian S, Vazini H, et al. Macrophage plasticity, polarization, and function in health and disease [J]. J Cell Physiol, 2018, 233(9): 6425-6440.
|
10 |
Wang K, Sun Q, Zhong X, et al. Structural mechanism for GSDMD targeting by autoprocessed caspases in pyroptosis [J]. Cell, 2020, 180(5): 941-955.e20.
|
11 |
Jorgensen I, Rayamajhi M, Miao EA. Programmed cell death as a defence against infection [J]. Nat Rev Immunol, 2017, 17(3): 151-164.
|
12 |
Medina CB, Mehrotra P, Arandjelovic S, et al. Metabolites released from apoptotic cells act as tissue messengers [J]. Nature, 2020, 580(7801): 130-135.
|
13 |
Suzanne M, Steller H. Shaping organisms with apoptosis [J]. Cell Death Differ, 2013, 20(5): 669-675.
|
14 |
Matute-Bello G, Liles WC, Radella F, et al. Neutrophil apoptosis in the acute respiratory distress syndrome [J]. Am J Respir Crit Care Med, 1997, 156(6): 1969-1977.
|
15 |
Rosseau S, Hammerl P, Maus U, et al. Phenotypic characterization of alveolar monocyte recruitment in acute respiratory distress syndrome [J]. Am J Physiol Lung Cell Mol Physiol, 2000, 279(1): L25-35.
|
16 |
Duffield JS, Forbes SJ, Constandinou CM, et al. Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair [J]. J Clin Invest, 2005, 115(1): 56-65.
|
17 |
Janssen WJ, Barthel L, Muldrow A, et al. Fas determines differential fates of resident and recruited macrophages during resolution of acute lung injury [J]. Am J Respir Crit Care Med, 2011, 184(5): 547-560.
|
18 |
Xiang SY, Ye Y, Yang Q, et al. RvD1 accelerates the resolution of inflammation by promoting apoptosis of the recruited macrophages via the ALX/FasL-FasR/caspase-3 signaling pathway [J]. Cell Death Discov, 2021, 7(1): 339.
|
19 |
Molaei E, Molaei A, Hayes AW, et al. Resolvin D1, therapeutic target in acute respiratory distress syndrome [J]. Eur J Pharmacol, 2021, 911: 174527.
|
20 |
Santambrogio L, Cuervo AM. Chasing the elusive mammalian microautophagy [J]. Autophagy, 2011, 7(6): 652-654.
|
21 |
Glick D, Barth S, Macleod KF. Autophagy: cellular and molecular mechanisms [J]. J Pathol, 2010, 221(1): 3-12.
|
22 |
Johansen T, Lamark T. Selective autophagy mediated by autophagic adapter proteins [J]. Autophagy, 2011, 7(3): 279-296.
|
23 |
Rubinsztein DC, Codogno P, Levine B. Autophagy modulation as a potential therapeutic target for diverse diseases [J]. Nat Rev Drug Discov, 2012, 11(9): 709-730.
|
24 |
Mizushima N, Levine B. Autophagy in human diseases [J]. N Engl J Med, 2020, 383(16): 1564-1576.
|
25 |
Fan T, Huang Z, Wang W, et al. Proteasome inhibition promotes autophagy and protects from endoplasmic reticulum stress in rat alveolar macrophages exposed to hypoxia-reoxygenation injury [J]. J Cell Physiol, 2018, 233(10): 6748-6758.
|
26 |
Wen Z, Fan L, Li Y, et al. Neutrophils counteract autophagy-mediated anti-inflammatory mechanisms in alveolar macrophage: role in posthemorrhagic shock acute lung inflammation [J]. J Immunol, 2014, 193(9): 4623-4633.
|
27 |
Jia X, Cao B, An Y, et al. Rapamycin ameliorates lipopolysaccharide-induced acute lung injury by inhibiting IL-1β and IL-18 production [J]. Int Immunopharmacol, 2019, 67: 211-219.
|
28 |
Fan T, Chen L, Huang Z, et al. Autophagy decreases alveolar macrophage apoptosis by attenuating endoplasmic reticulum stress and oxidative stress [J]. Oncotarget, 2016, 7(52): 87206-87218.
|
29 |
Sun L, Guo RF, Gao H, et al. Attenuation of IgG immune complex-induced acute lung injury by silencing C5aR in lung epithelial cells [J]. FASEB J, 2009, 23(11): 3808-3818.
|
30 |
Vercellotti GM, Moldow CF, Jacob HS. Complement, oxidants, and endothelial injury: how a bedside observation opened a door to vascular biology [J]. J Clin Invest, 2012, 122(9): 3044-3045.
|
31 |
Hu R, Chen ZF, Yan J, et al. Complement C5a exacerbates acute lung injury induced through autophagy-mediated alveolar macrophage apoptosis [J]. Cell Death Dis, 2014, 5(7): e1330.
|
32 |
Liu X, Gao C, Wang Y, et al. BMSC-derived exosomes ameliorate Lps-induced acute lung injury by miR-384-5p-controlled alveolar macrophage autophagy [J]. Oxid Med Cell Longev, 2021, 2021: 9973457.
|
33 |
Huang C, You Q, Xu J, et al. An mTOR siRNA-loaded spermidine/DNA tetrahedron nanoplatform with a synergistic anti-inflammatory effect on acute lung injury [J]. Adv Healthc Mater, 2022, 11(11): e2200008.
|
34 |
Shi J, Zhao Y, Wang K, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death [J]. Nature, 2015, 526(7575): 660-665.
|
35 |
Kayagaki N, Stowe IB, Lee BL, et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling [J]. Nature, 2015, 526(7575): 666-671.
|
36 |
Pinkerton JW, Kim RY, Robertson AAB, et al. Inflammasomes in the lung [J]. Mol Immunol, 2017, 86: 44-55.
|
37 |
Kovacs SB, Miao EA. Gasdermins: effectors of pyroptosis [J]. Trends Cell Biol, 2017, 27(9): 673-684.
|
38 |
Hammerschmidt S, Kuhn H, Grasenack T, et al. Apoptosis and necrosis induced by cyclic mechanical stretching in alveolar type Ⅱ cells [J]. Am J Respir Cell Mol Biol, 2004, 30(3): 396-402.
|
39 |
Pasparakis M, Vandenabeele P. Necroptosis and its role in inflammation [J]. Nature, 2015, 517(7534): 311-320.
|
40 |
Slutsky AS, Ranieri VM. Ventilator-induced lung injury [J]. N Engl J Med, 2013, 369(22): 2126-2136.
|
41 |
Dai M, Li Q, Pan P. The modulation of interferon regulatory factor-1 via caspase-1-mediated alveolar macrophage pyroptosis in ventilator-induced lung injury [J]. Mediators Inflamm, 2022, 2022: 1002582.
|
42 |
Qin X, Zhou Y, Jia C, et al. Caspase-1-mediated extracellular vesicles derived from pyroptotic alveolar macrophages promote inflammation in acute lung injury [J]. Int J Biol Sci, 2022, 18(4): 1521-1538.
|
43 |
Gou X, Xu W, Liu Y, et al. IL-6 prevents lung macrophage death and lung inflammation injury by inhibiting GSDME- and GSDMD-mediated pyroptosis during Pneumococcal pneumosepsis [J]. Microbiol Spectr, 2022, 10(2): e0204921.
|
44 |
Behar SM, Martin CJ, Booty MG, et al. Apoptosis is an innate defense function of macrophages against Mycobacterium tuberculosis [J]. Mucosal Immunol, 2011, 4(3): 279-287.
|
45 |
Chen GY, Nuñez G. Sterile inflammation: sensing and reacting to damage [J]. Nat Rev Immunol, 2010, 10(12): 826-837.
|
46 |
Dagvadorj J, Shimada K, Chen S, et al. Lipopolysaccharide induces alveolar macrophage necrosis via CD14 and the P2X7 receptor leading to interleukin-1α release [J]. Immunity, 2015, 42(4): 640-653.
|
47 |
Wang W, Zhu L, Li H, et al. Alveolar macrophage-derived exosomal tRF-22-8BWS7K092 activates Hippo signaling pathway to induce ferroptosis in acute lung injury [J]. Int Immunopharmacol, 2022, 107: 108690.
|
48 |
Tsvetkov P, Coy S, Petrova B, et al. Copper induces cell death by targeting lipoylated TCA cycle proteins [J]. Science, 2022, 375(6586): 1254-1261.
|
49 |
Linkermann A, Stockwell BR, Krautwald S, et al. Regulated cell death and inflammation: an auto-amplification loop causes organ failure [J]. Nat Rev Immunol, 2014, 14(11): 759-767.
|