[1] |
Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3)[J]. JAMA, 2016, 315(8):801–810.
|
[2] |
Okamoto K, Tamura T, Sawatsubashi Y. Sepsis and disseminated intravascular coagulation[J]. J Intensive Care, 2016, 4:23.
|
[3] |
Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock; 2012[J]. Crit Care Med, 2013, 41(2):580–637.
|
[4] |
Oda S, Aibiki M, Ikeda T, et al. The Japanese guidelines for the management of sepsis[J]. J Intensive Care, 2014, 2(1):55.
|
[5] |
Angus DC, van der Poll T. Severe Sepsis and Septic Shock[J]. N Engl J Med, 2013, 369(9):840–851.
|
[6] |
Wiersinga WJ, Leopold SJ, Cranendonk DR, et al. Host innate immune responses to sepsis[J]. Virulence , 2014, 5(1):36–44 .
|
[7] |
Semeraro N, Ammollo CT, Semeraro F, et al. Coagulopathy of Acute Sepsis[J]. Semin Thromb Hemost , 2015, 41(6):650–658.
|
[8] |
Fuchs TA, Brill A, Duerschmied D, et al. Extracellular DNA traps promote thrombosis[J]. Proc Natl Acad Sci U S A, 2010, 107(36):15880–15885.
|
[9] |
Ammollo CT, Semeraro F, Xu J, Esmon NL, et al. Extracellular histones increase plasma thrombin generation by impairing thrombomodulin-dependent protein C activation[J]. J Thromb Haemost, 2011, 9(9):1795–1803.
|
[10] |
Ito T. PAMPs and DAMPs as triggers for DIC[J]. J Intensive Care, 2014, 2(1):67.
|
[11] |
Engelmann B, Massberg S. Thrombosis as an intravascular effector of innate immunity[J]. Nat Rev Immunol , 2013, 13(1):34–45.
|
[12] |
Seeley EJ, Matthay MA, Wolters PJ. Inflection points in sepsis biology: from local defense to systemic organ injury[J]. Am J Physiol Lung Cell Mol Physiol , 2012, 303(5):355–363.
|
[13] |
Soerensen KE, Olsen HG, Skovgaard K, et al. Disseminated intravascular coagulation in a novel porcine model of severe staphylococcus aureus sepsis fulfills human clinical criteria[J]. J Comp Pathol, 2013, 149(4):463–474.
|
[14] |
Simmons J, Pittet JF. The coagulopathy of acute sepsis[J]. Curr Opin Anaesthesiol, 2015, 28(2):227–236.
|
[15] |
Abraham E, Reinhart K, Opal S, et al. Efficacy and safety of tifacogin (recombinant tissue factor pathway inhibitor) in severe sepsis: a randomized controlled trial[J]. JAMA, 2003, 290(2):238–247.
|
[16] |
Wunderink RG, Laterre PF, Francois B, et al. Recombinant tissue factor pathway inhibitor in severe community-acquired pneumonia a randomized trial[J]. Am J Respir Crit Care Med , 2011, 183(11):1561–1568.
|
[17] |
Warren BL, Eid A, Singer P, et al. Caring for the critically ill patient. High-dose antithrombin III in severe sepsis: a randomized controlled trial[J]. JAMA, 2001, 286(15):1869–1878.
|
[18] |
Allingstrup M, Wetterslev J, Ravn FB, et al. Antithrombin Ⅲ for critically ill patients[J]. Cochrane Database Syst Rev, 2016, 2:CD005370.
|
[19] |
Bernard GR, Vincent JL, Laterre PF, et al. Efficacy and safety of recombinant human activated protein C for severe sepsis[J]. N Engl J Med, 2001, 344(10):699–709.
|
[20] |
Dellinger RP, Carlet JM, Masur H, et al. Surviving Sepsis Campaign guidelines for management of severe sepsis and septic shock[J]. Intensive Care Med, 2004, 30(4):536–555.
|
[21] |
Abraham E, Laterre PF, Garg R, et al. Drotrecogin alfa (activated) for adults with severe sepsis and a low risk of death[J]. N Engl J Med, 2005, 353(13):1332–1341.
|
[22] |
Ranieri VM, Thompson BT, Barie PS, et al. Drotrecogin alfa (activated) in adults with septic shock[J]. N Engl J Med, 2012, 366(22):2055–2064.
|
[23] |
Dellinger RP, Levy MM, Rhodes A, et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012[J]. Crit Care Med, 2013, 41(2):580–637.
|
[24] |
Vincent JL, Ramesh MK, Ernest D, et al. A randomized, double-blind, placebo-controlled, Phase 2b study to evaluate the safety and efficacy ofrecombinant human soluble thrombomodulin, ART-123, in patients with sepsis and suspected disseminated intravascular coagulation[J]. Crit Care Med, 2013, 41(9):2069–2079.
|
[25] |
Yamakawa K, Aihara M, Ogura H, et al. Recombinant human soluble thrombomodulin in severe sepsis: a systematic review and meta-analysis[J]. J Thromb Haemost, 2015 , 13(4):508–519.
|
[26] |
Jaimes F, De La Rosa G, Morales C, et al. Unfractioned heparin for treatment of sepsis: A randomized clinical trial (The HETRASE Study)[J]. Crit Care Med, 2009, 37(4):1185–1196.
|
[27] |
Wang C, Chi C, Guo L, et al. Heparin therapy reduces 28-day mortality in adult severe sepsis patients: a systematic review and meta-analysis[J]. Crit Care, 2014, 18(5):563.
|
[28] |
Zarychanski R, Abou-Setta AM, Kanji S, et al. The efficacy and safety of heparin in patients with sepsis: a systematic review and metaanalysis[J]. Crit Care Med, 2015, 43(3):511–518.
|
[29] |
Allen KS, Sawheny E, Kinasewitz GT. Anticoagulant modulation of inflammation in severe sepsis[J]. World J Crit Care Med, 2015, 4(2):105–115.
|
[30] |
Fiusa MM, Carvalho-Filho MA, Annichino-Bizzacchi JM, et al. Causes and consequences of coagulation activation in sepsis: an evolutionary medicine perspective[J]. BMC Med, 2015, 13:105.
|
[31] |
Umemura Y, Yamakawa K, Ogura H, et al. Efficacy and safety of anticoagulant therapy in three specific populations with sepsis: a meta-analysis of randomized controlled trials[J]. J Thromb Haemost, 2016, 14(3):518–530.
|
[32] |
Iba T, Thachil J. Present and future of anticoagulant therapy using antithrombin and thrombomodulin for sepsis-associated disseminated intravascular coagulation: a perspective from Japan[J]. Int J Hematol, 2016, 103(3):253–261.
|
[33] |
Iba T, Saitoh D, Wada H, et al. Efficacy and bleeding risk of antithrombin supplementation in septic disseminated intravascular coagulation: a secondary survey[J]. Crit Care, 2014, 18(5):497.
|
[34] |
Yoshimura J, Yamakawa K, Ogura H, et al. Benefit profile of recombinant human soluble thrombomodulin in sepsis-induced disseminated intravascular coagulation: a multicenter propensity score analysis[J]. Crit Care, 2015, 19:78.
|
[35] |
Semeraro N, Ammollo CT, Semeraro F, et al. Sepsis, thrombosis and organ dysfunction[J]. Thromb Res, 2012, 129(3):290–295.
|
[36] |
Allam R, Kumar SV, Darisipudi MN, et al. Extracellular histones in tissue injury and inflammation[J]. J Mol Med (Berl), 2014, 92(5):465–472.
|
[37] |
Xu J, Zhang X, Pelayo R, et al. Extracellular histones are major mediators of death in sepsis[J]. Nat Med, 2009, 15(11):1318–1321.
|
[38] |
Li Y, Liu Z, Liu B, et al. Citrullinated histone H3: a novel target for the treatment of sepsis[J]. Surgery, 2014, 156(2):229–234.
|
[39] |
Iba T, Hashiguchi N, Nagaoka I, et al. Heparins attenuated histone-mediated cytotoxicity in vitro and improved the survival in a rat model of histone-induced organ dysfunction[J]. Intensive Care Med Exp, 2015, 3(1):36.
|
[40] |
Wildhagen KC, García de Frutos P, Reutelingsperger CP, et al. Nonanticoagulant heparin prevents histone-mediated cytotoxicity in vitro and improves survival in sepsis[J]. Blood, 2014, 123(7):1098–1101.
|
[41] |
Wildhagen KC, Ding R, Hao D, Guo R, et al. Treatment with unfractionated heparin attenuates Coagulation and Inflammation in Endotoxemic Mice[J]. Thromb Res, 2011, 128(6):160–165.
|
[42] |
Zhao D, Ding R, Mao Y, et al. Heparin rescues sepsis-associated acute lung injury and lethality through the suppression of inflammatory responses[J]. Inflammation, 2012, 35(6):1825–1832.
|
[43] |
Li X, Zheng Z, Li X, et al. Unfractionated heparin inhibits lipopolysaccharide-induced inflammatory response through blocking p38 MAPK and NF-κB activation on endothelial cell[J]. Cytokine, 2012, 60(1):114–121.
|
[44] |
Luan ZG, Naranpurev M, Ma XC. Treatment of low molecular weight heparin inhibits systemic inflammation and prevents endotoxin-induced acute lung injury in rats[J]. Inflammation, 2014, 37(3):924–932.
|
[45] |
Yini S, Heng Z, Xin A, et al. Effect of unfractionated heparin on endothelial glycocalyx in a septic shock model[J]. Acta Anaesthesiol Scand, 2015, 59(2):160–169.
|
[46] |
Wang L, Liu Z, Dong Z, et al. Azurocidin-induced inhibition of oxygen metabolism in mitochondria is antagonized by heparin[J]. Exp Ther Med, 2014, 8(5):1473–1478.
|
[47] |
Iba T, Miki T, Hashiguchi N, et al. Combination of antithrombin and recombinant thrombomodulin modulates neutrophil cell-death and decreases circulating DAMPs levels in endotoxemic rats[J]. Thromb Res, 2014, 134(1):169–173.
|
[48] |
Annane D, Buisson CB, Cariou A, et al. Design and conduct of the activated protein C and corticosteroids for human septic shock (APROCCHSS) trial[J]. Ann Intensive Care, 2016, 6(1):43.
|