切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2016, Vol. 02 ›› Issue (03) : 156 -161. doi: 10.3877/cma.j.jssn.2096-1537.2016.03.004

所属专题: 重症医学 总编推荐 文献

述评

脓毒症抗凝治疗的现实与未来
章志丹, 李鑫, 马晓春   
  • 收稿日期:2016-07-18 出版日期:2016-08-28
  • 通信作者: 马晓春

The current situation and future of anticoagulant therapy for sepsis

Zhidan Zhang, Xin Li, Xiaochun Ma   

  • Received:2016-07-18 Published:2016-08-28
  • Corresponding author: Xiaochun Ma
  • About author:
    Corresponding author: Ma Xiaochun, Email:
引用本文:

章志丹, 李鑫, 马晓春. 脓毒症抗凝治疗的现实与未来[J/OL]. 中华重症医学电子杂志, 2016, 02(03): 156-161.

Zhidan Zhang, Xin Li, Xiaochun Ma. The current situation and future of anticoagulant therapy for sepsis[J/OL]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2016, 02(03): 156-161.

脓毒症是感染诱发的宿主反应失调所导致危及生命的器官功能障碍的一种临床综合征,通常伴有凝血功能障碍的发生。脓毒症诱发的微血管内血栓形成具有"双刃剑"的作用。感染局部的微血管内血栓形成能够发挥免疫血栓的防御功能,促进病原微生物的清除,对机体是有利的。相反,弥散性微血管内血栓形成是脓毒症相关多器官功能障碍的重要发病机制,为脓毒症的抗凝治疗提供了充足的理论基础。尽管针对脓毒症抗凝治疗的临床研究尚存在争议,但并不能因此而全面否定抗凝治疗对脓毒症的价值。我们应当全面评估脓毒症患者的凝血功能障碍,寻找抗凝治疗的合适时机以及可能受益的人群,并采用优化的抗凝治疗策略,为脓毒症的抗凝治疗寻求更为合理有效的方案。

Sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection and is usually associated with coagulation dysfunction. Sepsis induced microvascular thrombosis works as a ″double-edged sword″. The local microvascular thrombosis can play a role of host defense as immunothrombosis and promote the removal of pathogenic microorganisms. In contrast, disseminated intravascular thrombosis is an important pathogenesis of sepsis related multiple organ dysfunction, which provides a theoretical basis for the anticoagulation therapy. Although there is controversy about the clinical trials on the anticoagulation therapy for sepsis, the clinical value of anticoagulation therapy can not be completely denied. We should comprehensive evaluate the coagulation function of septic patients to find the optimal timing for anticoagulant therapy and the optimal patient group who may get benefit from the anticoagulant therapy, and further optimize the strategy of anticoagulant therapy for septic patients.

[1]
Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3)[J]. JAMA, 2016, 315(8):801–810.
[2]
Okamoto K, Tamura T, Sawatsubashi Y. Sepsis and disseminated intravascular coagulation[J]. J Intensive Care, 2016, 4:23.
[3]
Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock; 2012[J]. Crit Care Med, 2013, 41(2):580–637.
[4]
Oda S, Aibiki M, Ikeda T, et al. The Japanese guidelines for the management of sepsis[J]. J Intensive Care, 2014, 2(1):55.
[5]
Angus DC, van der Poll T. Severe Sepsis and Septic Shock[J]. N Engl J Med, 2013, 369(9):840–851.
[6]
Wiersinga WJ, Leopold SJ, Cranendonk DR, et al. Host innate immune responses to sepsis[J]. Virulence , 2014, 5(1):36–44 .
[7]
Semeraro N, Ammollo CT, Semeraro F, et al. Coagulopathy of Acute Sepsis[J]. Semin Thromb Hemost , 2015, 41(6):650–658.
[8]
Fuchs TA, Brill A, Duerschmied D, et al. Extracellular DNA traps promote thrombosis[J]. Proc Natl Acad Sci U S A, 2010, 107(36):15880–15885.
[9]
Ammollo CT, Semeraro F, Xu J, Esmon NL, et al. Extracellular histones increase plasma thrombin generation by impairing thrombomodulin-dependent protein C activation[J]. J Thromb Haemost, 2011, 9(9):1795–1803.
[10]
Ito T. PAMPs and DAMPs as triggers for DIC[J]. J Intensive Care, 2014, 2(1):67.
[11]
Engelmann B, Massberg S. Thrombosis as an intravascular effector of innate immunity[J]. Nat Rev Immunol , 2013, 13(1):34–45.
[12]
Seeley EJ, Matthay MA, Wolters PJ. Inflection points in sepsis biology: from local defense to systemic organ injury[J]. Am J Physiol Lung Cell Mol Physiol , 2012, 303(5):355–363.
[13]
Soerensen KE, Olsen HG, Skovgaard K, et al. Disseminated intravascular coagulation in a novel porcine model of severe staphylococcus aureus sepsis fulfills human clinical criteria[J]. J Comp Pathol, 2013, 149(4):463–474.
[14]
Simmons J, Pittet JF. The coagulopathy of acute sepsis[J]. Curr Opin Anaesthesiol, 2015, 28(2):227–236.
[15]
Abraham E, Reinhart K, Opal S, et al. Efficacy and safety of tifacogin (recombinant tissue factor pathway inhibitor) in severe sepsis: a randomized controlled trial[J]. JAMA, 2003, 290(2):238–247.
[16]
Wunderink RG, Laterre PF, Francois B, et al. Recombinant tissue factor pathway inhibitor in severe community-acquired pneumonia a randomized trial[J]. Am J Respir Crit Care Med , 2011, 183(11):1561–1568.
[17]
Warren BL, Eid A, Singer P, et al. Caring for the critically ill patient. High-dose antithrombin III in severe sepsis: a randomized controlled trial[J]. JAMA, 2001, 286(15):1869–1878.
[18]
Allingstrup M, Wetterslev J, Ravn FB, et al. Antithrombin Ⅲ for critically ill patients[J]. Cochrane Database Syst Rev, 2016, 2:CD005370.
[19]
Bernard GR, Vincent JL, Laterre PF, et al. Efficacy and safety of recombinant human activated protein C for severe sepsis[J]. N Engl J Med, 2001, 344(10):699–709.
[20]
Dellinger RP, Carlet JM, Masur H, et al. Surviving Sepsis Campaign guidelines for management of severe sepsis and septic shock[J]. Intensive Care Med, 2004, 30(4):536–555.
[21]
Abraham E, Laterre PF, Garg R, et al. Drotrecogin alfa (activated) for adults with severe sepsis and a low risk of death[J]. N Engl J Med, 2005, 353(13):1332–1341.
[22]
Ranieri VM, Thompson BT, Barie PS, et al. Drotrecogin alfa (activated) in adults with septic shock[J]. N Engl J Med, 2012, 366(22):2055–2064.
[23]
Dellinger RP, Levy MM, Rhodes A, et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012[J]. Crit Care Med, 2013, 41(2):580–637.
[24]
Vincent JL, Ramesh MK, Ernest D, et al. A randomized, double-blind, placebo-controlled, Phase 2b study to evaluate the safety and efficacy ofrecombinant human soluble thrombomodulin, ART-123, in patients with sepsis and suspected disseminated intravascular coagulation[J]. Crit Care Med, 2013, 41(9):2069–2079.
[25]
Yamakawa K, Aihara M, Ogura H, et al. Recombinant human soluble thrombomodulin in severe sepsis: a systematic review and meta-analysis[J]. J Thromb Haemost, 2015 , 13(4):508–519.
[26]
Jaimes F, De La Rosa G, Morales C, et al. Unfractioned heparin for treatment of sepsis: A randomized clinical trial (The HETRASE Study)[J]. Crit Care Med, 2009, 37(4):1185–1196.
[27]
Wang C, Chi C, Guo L, et al. Heparin therapy reduces 28-day mortality in adult severe sepsis patients: a systematic review and meta-analysis[J]. Crit Care, 2014, 18(5):563.
[28]
Zarychanski R, Abou-Setta AM, Kanji S, et al. The efficacy and safety of heparin in patients with sepsis: a systematic review and metaanalysis[J]. Crit Care Med, 2015, 43(3):511–518.
[29]
Allen KS, Sawheny E, Kinasewitz GT. Anticoagulant modulation of inflammation in severe sepsis[J]. World J Crit Care Med, 2015, 4(2):105–115.
[30]
Fiusa MM, Carvalho-Filho MA, Annichino-Bizzacchi JM, et al. Causes and consequences of coagulation activation in sepsis: an evolutionary medicine perspective[J]. BMC Med, 2015, 13:105.
[31]
Umemura Y, Yamakawa K, Ogura H, et al. Efficacy and safety of anticoagulant therapy in three specific populations with sepsis: a meta-analysis of randomized controlled trials[J]. J Thromb Haemost, 2016, 14(3):518–530.
[32]
Iba T, Thachil J. Present and future of anticoagulant therapy using antithrombin and thrombomodulin for sepsis-associated disseminated intravascular coagulation: a perspective from Japan[J]. Int J Hematol, 2016, 103(3):253–261.
[33]
Iba T, Saitoh D, Wada H, et al. Efficacy and bleeding risk of antithrombin supplementation in septic disseminated intravascular coagulation: a secondary survey[J]. Crit Care, 2014, 18(5):497.
[34]
Yoshimura J, Yamakawa K, Ogura H, et al. Benefit profile of recombinant human soluble thrombomodulin in sepsis-induced disseminated intravascular coagulation: a multicenter propensity score analysis[J]. Crit Care, 2015, 19:78.
[35]
Semeraro N, Ammollo CT, Semeraro F, et al. Sepsis, thrombosis and organ dysfunction[J]. Thromb Res, 2012, 129(3):290–295.
[36]
Allam R, Kumar SV, Darisipudi MN, et al. Extracellular histones in tissue injury and inflammation[J]. J Mol Med (Berl), 2014, 92(5):465–472.
[37]
Xu J, Zhang X, Pelayo R, et al. Extracellular histones are major mediators of death in sepsis[J]. Nat Med, 2009, 15(11):1318–1321.
[38]
Li Y, Liu Z, Liu B, et al. Citrullinated histone H3: a novel target for the treatment of sepsis[J]. Surgery, 2014, 156(2):229–234.
[39]
Iba T, Hashiguchi N, Nagaoka I, et al. Heparins attenuated histone-mediated cytotoxicity in vitro and improved the survival in a rat model of histone-induced organ dysfunction[J]. Intensive Care Med Exp, 2015, 3(1):36.
[40]
Wildhagen KC, García de Frutos P, Reutelingsperger CP, et al. Nonanticoagulant heparin prevents histone-mediated cytotoxicity in vitro and improves survival in sepsis[J]. Blood, 2014, 123(7):1098–1101.
[41]
Wildhagen KC, Ding R, Hao D, Guo R, et al. Treatment with unfractionated heparin attenuates Coagulation and Inflammation in Endotoxemic Mice[J]. Thromb Res, 2011, 128(6):160–165.
[42]
Zhao D, Ding R, Mao Y, et al. Heparin rescues sepsis-associated acute lung injury and lethality through the suppression of inflammatory responses[J]. Inflammation, 2012, 35(6):1825–1832.
[43]
Li X, Zheng Z, Li X, et al. Unfractionated heparin inhibits lipopolysaccharide-induced inflammatory response through blocking p38 MAPK and NF-κB activation on endothelial cell[J]. Cytokine, 2012, 60(1):114–121.
[44]
Luan ZG, Naranpurev M, Ma XC. Treatment of low molecular weight heparin inhibits systemic inflammation and prevents endotoxin-induced acute lung injury in rats[J]. Inflammation, 2014, 37(3):924–932.
[45]
Yini S, Heng Z, Xin A, et al. Effect of unfractionated heparin on endothelial glycocalyx in a septic shock model[J]. Acta Anaesthesiol Scand, 2015, 59(2):160–169.
[46]
Wang L, Liu Z, Dong Z, et al. Azurocidin-induced inhibition of oxygen metabolism in mitochondria is antagonized by heparin[J]. Exp Ther Med, 2014, 8(5):1473–1478.
[47]
Iba T, Miki T, Hashiguchi N, et al. Combination of antithrombin and recombinant thrombomodulin modulates neutrophil cell-death and decreases circulating DAMPs levels in endotoxemic rats[J]. Thromb Res, 2014, 134(1):169–173.
[48]
Annane D, Buisson CB, Cariou A, et al. Design and conduct of the activated protein C and corticosteroids for human septic shock (APROCCHSS) trial[J]. Ann Intensive Care, 2016, 6(1):43.
[1] 庄燕, 戴林峰, 张海东, 陈秋华, 聂清芳. 脓毒症患者早期生存影响因素及Cox 风险预测模型构建[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(05): 372-378.
[2] 杨瑾, 刘雪克, 张媛媛, 金钧, 韦瑶. 肠道微生物来源石胆酸对脓毒症相关肝损伤的保护作用[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 265-274.
[3] 张霞, 张瑞, 郑志波, 张勤. 紫草素调控乳酸化修饰和线粒体功能改善脓毒症心肌病小鼠的预后[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 275-284.
[4] 张婧琦, 江洋, 孙佳璐, 唐兴喆, 赵宇飞, 崔颖, 李信响, 戴景月, 傅琳, 彭新桂. 基于肾周CT特征结合血清肌酐水平探讨脓毒症伴急性肾损伤的早期识别[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 285-292.
[5] 李振翮, 魏长青, 甄国栋, 李振富. 脓毒症并发急性呼吸窘迫综合征患者血清S1P、Wnt5a变化及其临床意义[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 293-300.
[6] 赖乾德, 吕相琴, 蔺洋, 刘媛梅, 赵春艳, 李琦. 肝素结合蛋白对慢性阻塞性肺疾病预后预测分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 613-616.
[7] 丁镇涛, 邢博涵, 曲洋, 王泊江, 张培训. 老年肱骨近端骨折的围手术期治疗策略[J/OL]. 中华肩肘外科电子杂志, 2024, 12(04): 292-294.
[8] 周祥, 张庆庆, 张雪琴, 王晓宇, 姜鸿. Meta分析庆大霉素封管液预防血透患者中心静脉导管相关感染[J/OL]. 中华肾病研究电子杂志, 2024, 13(04): 201-206.
[9] 成人脓毒症患者β-内酰胺类抗生素延长输注专家共识编写组. 成人脓毒症患者β-内酰胺类抗生素延长输注专家共识[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 313-324.
[10] 陈曦, 吴宗盛, 郑明珠, 邱海波. 胸腺萎缩在脓毒症免疫紊乱中的研究进展[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 379-383.
[11] 杨翔, 郭兰骐, 谢剑锋, 邱海波. 转录组学在脓毒症诊疗中的临床研究进展[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 384-388.
[12] 胡梓菡, 彭菲, 孙骎, 杨毅. 细胞外囊泡在脓毒症血管内皮损伤作用中的研究进展[J/OL]. 中华重症医学电子杂志, 2024, 10(03): 265-270.
[13] 陈惠英, 邱敏珊, 邵汉权. 脓毒症诱发肠黏膜屏障功能损伤的风险因素模型构建与应用效果[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 448-452.
[14] 傅新露, 李之岳, 卢丹. 妊娠合并结肠癌穿孔致脓毒症休克一例并文献复习[J/OL]. 中华产科急救电子杂志, 2024, 13(04): 227-231.
[15] 周雅萍, 洪月慧, 苏宁, 刘暴, 朱铁楠, 倪俊. 脑淀粉样血管病合并易栓状态的临床治疗决策[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(04): 338-344.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?