切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2021, Vol. 07 ›› Issue (01) : 48 -54. doi: 10.3877/cma.j.issn.2096-1537.2021.01.009

所属专题: 文献

综述

脓毒症T淋巴细胞亚群免疫监测的研究进展
张思也1, 侯粲2,(), 钟燕军3, 伍国宝3   
  1. 1. 410011 长沙,湖南省人民医院 湖南师范大学附属第一医院重症医学科 湖南师范大学临床医学院;410011 长沙,中南大学湘雅二医院重症监护中心
    2. 410011 长沙,中南大学湘雅二医院重症监护中心;410011 长沙,中南大学湘雅二医院代谢内分泌科 糖尿病免疫学教育部重点实验室(中南大学) 国家代谢性疾病临床医学研究中心
    3. 410011 长沙,中南大学湘雅二医院重症监护中心
  • 收稿日期:2020-08-25 出版日期:2021-02-28
  • 通信作者: 侯粲
  • 基金资助:
    国家自然科学基金青年基金(81701962,81200580)

Review on advances of monitoring T-cell subsets in septic patients

Siye Zhang1, Can Hou2,(), Yanjun Zhong3, Guobao Wu3   

  1. 1. Intensive Care Unit, Hunan Provincial People's Hospital/the First Hospital Affiliated with Hunan Normal University, the Clinical Medicine of Hunan Normal University, Changsha 410011, China; Intensive Care Unit, the Second Xiangya Hospital of Central South University, Changsha 410011, China
    2. Intensive Care Unit, the Second Xiangya Hospital of Central South University, Changsha 410011, China; Department of Metabolism & Endocrinology, the Second Xiangya Hospital, Central South University, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha 410011, China
    3. Intensive Care Unit, the Second Xiangya Hospital of Central South University, Changsha 410011, China
  • Received:2020-08-25 Published:2021-02-28
  • Corresponding author: Can Hou
引用本文:

张思也, 侯粲, 钟燕军, 伍国宝. 脓毒症T淋巴细胞亚群免疫监测的研究进展[J/OL]. 中华重症医学电子杂志, 2021, 07(01): 48-54.

Siye Zhang, Can Hou, Yanjun Zhong, Guobao Wu. Review on advances of monitoring T-cell subsets in septic patients[J/OL]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2021, 07(01): 48-54.

由于脓毒症免疫反应的异质性、复杂的信号通路、促炎与抗炎的相互作用等诸多因素影响,脓毒症疗效及预后依然欠佳。脓毒症免疫抑制增加院内感染及死亡的风险。即使存活的患者通常也会出现长期的免疫抑制状态,是远期死亡的主要原因之一。此次新型冠状病毒肺炎(COVID-19)的流行,重型及危重型患者均符合脓毒症诊断标准。通过对脓毒症,尤其是重型、危重型COVID-19患者外周血辅助T细胞、调节性T细胞和CD8+T细胞研究,发现监测其变化趋势与脓毒症不同时期的免疫激活和免疫抑制显著相关。正确评估患者的免疫状态是个体化治疗的前提。本文综述了脓毒症T淋巴细胞亚群的变化,以期为精准治疗脓毒症和改善脓毒症患者的预后提供监测指标。

Although the understanding of the pathophysiological mechanism of sepsis has significantly improved, the outcome of septic patients remains poor. It is because of the heterogeneity of immune response, complex signaling pathways, the interplay of pro-inflammatory and anti-inflammatory processes and so on. Moreover, immunosuppression in sepsis increases the risk of death. Even survivors often remain a persistent immunosuppression status, which is one of the main reasons for long-term mortality. During pandemic of coronavirus disease 2019(COVID-19), severe COVID-19 patients also meet the diagnostic criteria of sepsis. In different periods of sepsis, there are close correlations between the counts of T cell subsets and immune status, demonstrated by monitoring peripheral helper T cells, regulatory T cells and CD8+T cells. The premise of appropriate treatment is to assess the patient's immune status precisely. Therefore, this review focuses on the change of T cell subsets counts, especially in patients with COVID-19, aiming to provide a monitoring indicator for precision immune treatment and improve outcome in sepsis.

表1 T细胞亚群相关细胞因子的作用机制及意义
表2 脓毒症中CD4+T淋巴细胞亚群的变化趋势及意义
CD4+T细胞亚群 性质 生理作用 生物学功能 变化趋势 临床意义
Th1 促炎 分泌CKs,如:IL-2、IFN-γ、TNF-α 介导细胞免疫,引起迟发型超敏反应 早期:升高 早期:Th2、Th1均升高,形成促炎与抗炎同时存在的炎症激活状态[24]
中晚期:升高或与病死率有关,但近期有文献报道其脓毒症中的独立变化趋势无明显统计学差异[24]
休克期:可下降 休克期:明显下降提示免疫抑制[22]
Th2 抑炎 分泌CKs,如:IL-4、5、6、10、13 辅助体液免疫、抗寄生虫感染 早期:迅速、显著升高 早期:Th2、Th1均升高,形成促炎与抗炎同时存在的炎症激活状态
中晚期:逐渐下降或持续高水平 中晚期:持续高水平Th2往往与不良预后相关
休克期:可下降 休克期:明显下降提示免疫抑制
Th17 促炎 分泌CKs,如IL-17 抵御细胞外细菌、真菌感染以及自身免疫 早期:升高 早期:提示抗炎反应,但过度的活化会加重组织损伤
中晚期:逐渐下降或高水平 中晚期:高水平提示更高概率的不良结局[26]
休克期:下降/升高 升高表示高度活化的促炎反应而不是更好的保护作用,加重病情
Tregs 抑炎 不同细胞群作用不同,可与受体结合直接作用,也可分泌IL-10或TGF-β 限制感染性疾病组织损伤,但也可增加病原体存活概率,抑制自身免疫疾病的发生发展,控制过敏反应 早期:升高 早期:限制脓毒症早期的促炎反应[28]
中晚期:可持续存在 参与免疫抑制,持续存在可降低宿主对继发院内感染的抵抗力[30]
休克期:3天内即可升高 进一步加重免疫抑制
14
Vachharajani V, Mccall CE. Epigenetic and metabolic programming of innate immunity in sepsis [J]. Innate Immun, 2019, 25(5):267-279.
15
Jensen IJ, Sjaastad FV, Griffith TS, et al. Sepsis-induced T cell immunoparalysis: the ins and outs of impaired t cell immunity [J]. J Immunol, 2018, 200(5):1543-1553.
16
Li H, Liu L, Zhang D, et al. SARS-CoV-2 and viral sepsis: observations and hypotheses [J]. Lancet, 2020, 395(10235): 1517-1520.
17
Liu J, Li S, Liu J, et al. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients [J]. EBioMedicine, 2020, 55: 102763.
18
Copaescu A, Smibert O, Gibson A, et al. The role of IL-6 and other mediators in the cytokine storm associated with SARS-CoV-2 infection [J]. J Allergy Clin Immunol, 2020, 146(3):518-534
19
Tjendra Y, Al Mana AF, Espejo AP, et al. Predicting disease severity and outcome in COVID-19 patients: a review of multiple biomarkers [J]. Arch Pathol Lab Med, 2020, 144(12): 1465-1474.
20
Wu ZY, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention [J]. JAMA, 2020, 323(13):1239-1242.
21
Wu HP, Chung K, Lin CY, et al. Associations of T helper 1, 2, 17 and regulatory T lymphocytes with mortality in severe sepsis [J]. Inflamm Res, 2013, 62(8): 751-763.
22
Li J, Li M, Su L, et al. Alterations of T helper lymphocyte subpopulations in sepsis, severe sepsis, and septic shock: a prospective observational study [J]. Inflammation, 2015, 38(3): 995-1002.
23
Sahin U, Muik A, Derhovanessian E, et al. COVID-19 vaccine BNT162b1 elicits human antibody and T H 1 T cell responses [J]. Nature, 2020, 586(7830): 594-599.
24
Xue M, Xie J, Liu L, et al. Early and dynamic alterations of Th2/Th1 in previously immunocompetent patients with community-acquired severe sepsis: a prospective observational study [J]. J Transl Med, 2019, 17(1): 57.
25
Vyas N, Kurian SJ, Bagchi D, et al. Vitamin D in prevention and treatment of COVID-19: current perspective and future prospects [J]. J Am Coll Nutr, 2020, 1: 1-14.
26
Guo J, Tao W, Tang D, et al. Th17/regulatory T cell imbalance in sepsis patients with multiple organ dysfunction syndrome: attenuated by high-volume hemofiltration [J]. Int J Artif Organs, 2017, 40(11): 607-614.
27
肖漓, 马锡慧. 淋巴细胞亚群成员研究进展 [J]. 中华细胞与干细胞杂志, 2017, 7(3): 168.
28
Tatura R, Zeschnigk M, Hansen W, et al. Relevance of Foxp3(+) regulatory T cells for early and late phases of murine sepsis [J]. Immunology, 2015, 146(1): 144-156.
29
Ghazavi A, Ganji A, Keshavarzian N, et al. Cytokine profile and disease severity in patients with COVID-19 [J]. Cytokine. 2020,137: 155323.
30
Cavassani KA, Carson WFT, Moreira AP, et al. The post sepsis-induced expansion and enhanced function of regulatory T cells create an environment to potentiate tumor growth [J]. Blood, 2010, 115(22): 4403-4411.
31
Gupta DL, Bhoi S, Mohan T, et al. Coexistence of Th1/Th2 and Th17/Treg imbalances in patients with post traumatic sepsis [J]. Cytokine, 2016, 88: 214-221.
32
Greenberg JA, Hrusch CL, Jaffery MR, et al. Distinct T-helper cell responses to Staphylococcus aureus bacteremia reflect immunologic comorbidities and correlate with mortality [J]. Crit Care, 2018, 22(1): 107.
33
Hohlstein P, Gussen H, Bartneck M, et al. Prognostic relevance of altered lymphocyte subpopulations in critical illness and sepsis [J]. J Clin Med, 2019, 8(3):353.
34
Danahy DB, Strother RK, Badovinac VP, et al. Clinical and experimental sepsis impairs CD8 T-cell-mediated immunity [J]. Crit Rev Immunol, 2016, 36(1): 57-74.
35
Xu Z, Shi L, Wang Y, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome [J]. Lancet Respir Med, 2020, 8(4): 420-422.
36
Marshall JC. Special issue: sepsis why have clinical trials in sepsis failed? [J]. Trends Mol Med, 2014, 20(4): 195-203.
37
Bermejo-Martin JF, Andaluz-Ojeda D, Almansa R, et al. Defining immunological dysfunction in sepsis: A requisite tool for precision medicine [J]. J Infect, 2016, 72(5): 525-536.
38
Kumar V. T cells and their immunometabolism: A novel way to understanding sepsis immunopathogenesis and future therapeutics [J]. Eur J Cell Biol, 2018, 97(6): 379-392.
39
Ding RY, Meng YL, Ma XC. The central role of the inflammatory response in understanding the heterogeneity of sepsis-3 [J]. Biomed Res Int, 2018(2018): 5086516.
1
Finkelsztein EJ, Jones DS, Ma KC, et al. Comparison of qSOFA and SIRS for predicting adverse outcomes of patients with suspicion of sepsis outside the intensive care unit [J]. Crit Care, 2017, 21(1): 73.
2
Fisher CJJr, Agosti JM, Opal SM, et al. Treatment of septic shock with the tumor necrosis factor receptor:Fc fusion protein. The Soluble TNF Receptor Sepsis Study Group [J]. N Engl J Med, 1996, 334(26): 1697-1702.
3
Hotchkiss RS, Monneret G, Payen D. Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy [J]. Nat Rev Immunol, 2013, 13(12): 862-874.
4
Jamme M, Daviaud F, Charpentier J, et al. Time course of septic shock in immunocompromised and nonimmunocompromised patients [J]. Crit Care Med, 2017, 45(12): 2031-2039.
5
Tolsma V, Schwebel C, Azoulay E, et al. Sepsis severe or septic shock: outcome according to immune status and immunodeficiency profile [J]. Chest, 2014, 146(5): 1205-1213.
6
Bhan C, Dipankar P, Chakraborty P, et al. Role of cellular events in the pathophysiology of sepsis [J]. Inflamm Res, 2016, 65(11): 853-868.
7
Van Der Poll T, Van De Veerdonk FL, Scicluna BP, et al. The immunopathology of sepsis and potential therapeutic targets [J]. Nat Rev Immunol, 2017, 17(7): 407-420.
8
Chousterman BG, Swirski FK, Weber GF. Cytokine storm and sepsis disease pathogenesis [J]. Semin Immunopathol, 2017, 39(5): 517-528.
9
Cuenca AG, Gentile LF, Lopez MC, et al. Development of a genomic metric that can be rapidly used to predict clinical outcome in severely injured trauma patients [J]. Crit Care Med, 2013, 41(5): 1175-1185.
10
苏和毅, 莫泽珣, 陈珍, 等. ICU严重免疫失衡疾病——持续炎症-免疫抑制-分解代谢综合征 [J]. 中华危重病急救医学, 2017, 29(8): 760-764.
11
Bahar I, Elay G, Baskol G, et al. Increased DNA damage and increased apoptosis and necrosis in patients with severe sepsis and septic shock [J]. J Crit Care, 2018, 43: 271-275.
12
Liu D, Cao S, Zhou Y, et al. Recent advances in endotoxin tolerance [J]. J Cell Biochem, 2019, 120(1): 56-70.
13
Feng Y, Liu B, Zheng X, et al. The protective role of autophagy in sepsis [J]. Microb Pathog, 2019, 131: 106-111.
[1] 庄燕, 戴林峰, 张海东, 陈秋华, 聂清芳. 脓毒症患者早期生存影响因素及Cox 风险预测模型构建[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(05): 372-378.
[2] 杨瑾, 刘雪克, 张媛媛, 金钧, 韦瑶. 肠道微生物来源石胆酸对脓毒症相关肝损伤的保护作用[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 265-274.
[3] 张霞, 张瑞, 郑志波, 张勤. 紫草素调控乳酸化修饰和线粒体功能改善脓毒症心肌病小鼠的预后[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 275-284.
[4] 张婧琦, 江洋, 孙佳璐, 唐兴喆, 赵宇飞, 崔颖, 李信响, 戴景月, 傅琳, 彭新桂. 基于肾周CT特征结合血清肌酐水平探讨脓毒症伴急性肾损伤的早期识别[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 285-292.
[5] 李振翮, 魏长青, 甄国栋, 李振富. 脓毒症并发急性呼吸窘迫综合征患者血清S1P、Wnt5a变化及其临床意义[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 293-300.
[6] 徐保平, 彭怀文, 喻怀斌, 王晓涛. 新型冠状病毒肺炎继发糖尿病酮症酸中毒合并肝门静脉积气一例[J/OL]. 中华实验和临床感染病杂志(电子版), 2024, 18(04): 250-255.
[7] 赖全友, 高远, 汪建林, 屈士斌, 魏丹, 彭伟. 三维重建技术结合腹腔镜精准肝切除术对肝癌患者术后CD4+、CD8+及免疫球蛋白水平的影响[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 651-654.
[8] 张英信, 林婷, 张剑文. 构建靶向HLA-A2且表达PD-L1的CAR-Treg细胞及验证其对CD4+T细胞抑制作用[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 719-728.
[9] 孙婧婷, 李娜, 罗明辉, 高瑶瑶, 白义行, 朱国贞. 短链脂肪酸对小鼠缺血再灌注肾损伤的炎症及纤维化影响和作用机制研究[J/OL]. 中华肾病研究电子杂志, 2024, 13(04): 181-187.
[10] 陈曦, 吴宗盛, 郑明珠, 邱海波. 胸腺萎缩在脓毒症免疫紊乱中的研究进展[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 379-383.
[11] 杨翔, 郭兰骐, 谢剑锋, 邱海波. 转录组学在脓毒症诊疗中的临床研究进展[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 384-388.
[12] 成人脓毒症患者β-内酰胺类抗生素延长输注专家共识编写组. 成人脓毒症患者β-内酰胺类抗生素延长输注专家共识[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 313-324.
[13] 胡梓菡, 彭菲, 孙骎, 杨毅. 细胞外囊泡在脓毒症血管内皮损伤作用中的研究进展[J/OL]. 中华重症医学电子杂志, 2024, 10(03): 265-270.
[14] 陈惠英, 邱敏珊, 邵汉权. 脓毒症诱发肠黏膜屏障功能损伤的风险因素模型构建与应用效果[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 448-452.
[15] 傅新露, 李之岳, 卢丹. 妊娠合并结肠癌穿孔致脓毒症休克一例并文献复习[J/OL]. 中华产科急救电子杂志, 2024, 13(04): 227-231.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?