1 |
Matthay MA, Arabi Y, Arroliga AC, et al. A new global definition of acute respiratory distress syndrome [J]. Am J Respir Crit Care Med, 2024, 209(1): 37-47.
|
2 |
Kumar V. Pulmonary innate immune response determines the outcome of inflammation during pneumonia and sepsis-associated acute lung injury [J]. Front Immunol, 2020, 11: 1722.
|
3 |
Zhu W, Zhang Y, Wang Y. Immunotherapy strategies and prospects for acute lung injury: Focus on immune cells and cytokines [J]. Front Pharmacol, 2022, 13: 1103309.
|
4 |
Saki N, Javan M, Moghimian-Boroujeni B, et al. Interesting effects of interleukins and immune cells on acute respiratory distress syndrome [J]. Clin Exp Med, 2023, 23(7): 2979-2996.
|
5 |
Tao H, Xu Y, Zhang S. The role of macrophages and alveolar epithelial cells in the development of ARDS [J]. Inflammation, 2023, 46(1): 47-55.
|
6 |
Quach C, Helou DG, Li M, et al. Enhancing autophagy in CD11c+ antigen-presenting cells as a therapeutic strategy for acute respiratory distress syndrome [J]. Cell Rep, 2023, 42(8): 112990.
|
7 |
Conte MI, Fuentes-Trillo A, Domínguez Conde C. Opportunities and tradeoffs in single-cell transcriptomic technologies [J]. Trends Genet, 2024, 40(1): 83-93.
|
8 |
Lu J, Sheng Y, Qian W, et al. scRNA-seq data analysis method to improve analysis performance [J]. IET Nanobiotechnol, 2023, 17(3): 246-256.
|
9 |
Tang W, Li M, Teng F, et al. Single-cell RNA-sequencing in asthma research [J]. Front Immunol, 2022, 13: 988573.
|
10 |
Li H, Wang H, Sokulsky L, et al. Single-cell transcriptomic analysis reveals key immune cell phenotypes in the lungs of patients with asthma exacerbation [J]. J Allergy Clin Immunol, 2021, 147(3): 941-954.
|
11 |
Stephenson E, Reynolds G, Botting RA, et al. Single-cell multi-omics analysis of the immune response in COVID-19 [J]. Nat Med, 2021, 27(5): 904-916.
|
12 |
Yang R, Zheng T, Xiang H, et al. Lung single-cell RNA profiling reveals response of pulmonary capillary to sepsis-induced acute lung injury [J]. Front Immunol, 2024, 15: 1308915.
|
13 |
Armstead BE, Lee CS, Chen Y, et al. Application of single cell multiomics points to changes in chromatin accessibility near calcitonin receptor like receptor and a possible role for adrenomedullin in the post-shock lung [J]. Front Med (Lausanne), 2023, 10: 1003121.
|
14 |
Godoy RS, Cober ND, Cook DP, et al. Single-cell transcriptomic atlas of lung microvascular regeneration after targeted endothelial cell ablation [J]. Elife, 2023, 12: e80900.
|
15 |
Schupp JC, Adams TS, Cosme C, et al. Integrated single-cell atlas of endothelial cells of the human lung [J]. Circulation, 2021, 144(4): 286-302.
|
16 |
Costa Monteiro AC, Matthay MA. Are circulating endothelial cells the next target for transcriptome-level pathway analysis in ARDS? [J]. Am J Physiol Lung Cell Mol Physiol, 2023, 324(4): L393-L399.
|
17 |
Grunwell JR, Rad MG, Stephenson ST, et al. Machine learning-based discoveryof a gene expression signature in pediatric acute respiratory distress syndrome [J]. Crit Care Explor, 2021, 3(6): e0431.
|
18 |
He D, Yu Q, Zeng X, et al. Single-cell RNA sequencing and transcriptome analysis revealed the immune microenvironment and gene markers of acute respiratory distress syndrome [J]. J Inflamm Res, 2023, 16: 3205-3217.
|
19 |
Mo J, Yang Y, Feng J, et al. Single-cell analysis reveals dysregulated inflammatory response in peripheral blood immunity in patients with acute respiratory distress syndrome [J]. Front Cell Dev Biol, 2023, 11: 1199122.
|
20 |
Jiang Y, Rosborough BR, Chen J, et al. Single cell RNA sequencing identifies an early monocyte gene signature in acute respiratory distress syndrome [J]. JCI Insight, 2020, 5(13): e135678.
|
21 |
Lin S, Yue X, Wu H, et al. Explore potential plasma biomarkers of acute respiratory distress syndrome (ARDS) using GC-MS metabolomics analysis [J]. Clin Biochem, 2019, 66: 49-56.
|
22 |
Metwaly SM, Winston BW. Systems biology ARDS research with a focus on metabolomics [J]. Metabolites, 2020, 10(5): 207.
|
23 |
Rogers AJ, Leligdowicz A, Contrepois K, et al. Plasma metabolites in early sepsis identify distinct clusters defined by plasma lipids [J]. Crit Care Explor, 2021, 3(8): e0478.
|
24 |
Viswan A, Ghosh P, Gupta D,et al. Distinct metabolic endotype mirroring acute respiratory distress syndrome (ARDS) subphenotype and its heterogeneous biology [J]. Sci Rep, 2019, 9(1): 2108.
|
25 |
Matthay MA, Zemans RL, Zimmerman GA, et al. Acute respiratory distress syndrome [J]. Nat Rev Dis Primers, 2019, 5(1): 18.
|
26 |
Chen X, Tang J, Shuai W, et al. Macrophage polarization and its role in the pathogenesis of acute lung injury/acute respiratory distress syndrome [J]. Inflamm Res, 2020, 69(9): 883-895.
|
27 |
Mills CD. M1 and M2 macrophages: oracles of health and disease [J]. Crit Rev Immunol, 2012, 32(6): 463-488.
|
28 |
Dang W, Tao Y, Xu X, et al. The role of lung macrophages in acute respiratory distress syndrome [J]. Inflamm Res, 2022, 71(12): 1417-1432.
|
29 |
Wang L, Wang D, Zhang T, et al. The role of immunometabolism in macrophage polarization and its impact on acute lung injury/acute respiratory distress syndrome [J]. Front Immunol, 2023, 14: 1117548.
|
30 |
Li X, Kolling FW, Aridgides D, et al. ScRNA-seq expression of IFI27 and APOC2 identifies four alveolar macrophage superclusters in healthy BALF [J]. Life Sci Alliance, 2022, 5(11): e202201458.
|
31 |
高超, 巢杰, 邱海波. T-bet:脓毒症免疫失衡中Th17细胞的新型调节分子 [J/OL]. 中华重症医学电子杂志, 2023, 9(3): 280-285.
|
32 |
Thomas R, Qiao S, Yang X. Th17/Treg imbalance: implications in lung inflammatory diseases [J]. Int J Mol Sci, 2023, 24(5): 4865.
|
33 |
Zhu C, Weng QY, Zhou LR, et al. Homeostatic and early-recruited CD101- eosinophils suppress endotoxin-induced acute lung injury [J]. Eur Respir J, 2020, 56(5): 1902354.
|