1 |
George PM, Wells AU, Jenkins RG. Pulmonary fibrosis and COVID-19: the potential role for antifibrotic therapy [J]. Lancet Respir Med, 2020, 8(8): 807-815.
|
2 |
Jyothula SSK, Peters A, Liang Y, et al. Fulminant lung fibrosis in non-resolvable COVID-19 requiring transplantation [J]. EBioMedicine, 2022, 86: 104351.
|
3 |
Yao XH, Luo T, Shi Y, et al. A cohort autopsy study defines COVID-19 systemic pathogenesis [J]. Cell Res, 2021, 31(8): 836-846.
|
4 |
Thille AW, Esteban A, Fernández-Segoviano P, et al. Chronology of histological lesions in acute respiratory distress syndrome with diffuse alveolar damage: a prospective cohort study of clinical autopsies [J]. Lancet Respir Med, 2013, 1(5): 395-401.
|
5 |
Bos LDJ, Ware LB. Acute respiratory distress syndrome: causes, pathophysiology, and phenotypes [J]. Lancet, 2022, 400(10358): 1145-1156.
|
6 |
Marshall RP, Bellingan G, Webb S, et al. Fibroproliferation occurs early in the acute respiratory distress syndrome and impacts on outcome [J]. Am J Respir Crit Care Med, 2000, 162(5): 1783-1788.
|
7 |
Gu J, Korteweg C. Pathology and pathogenesis of severe acute respiratory syndrome [J]. Am J Pathol, 2007, 170(4): 1136-1147.
|
8 |
Wang Q, Pan S, Zhang S, et al. Lung transplantation in pulmonary fibrosis secondary to influenza A pneumonia [J]. Ann Thorac Surg, 2019, 108(4): E233-E235.
|
9 |
Wendisch D, Dietrich O, Mari T, et al. SARS-CoV-2 infection triggers profibrotic macrophage responses and lung fibrosis [J]. Cell, 2021, 184(26): 6243-6261.
|
10 |
Solomon JJ, Heyman B, Ko JP, et al. CT of post-acute lung complications of COVID-19 [J]. Radiology, 2021, 301(2): E383-E395.
|
11 |
Michalski JE, Kurche JS, Schwartz DA. From ARDS to pulmonary fibrosis: the next phase of the COVID-19 pandemic? [J]. Transl Res, 2022, 241: 13-24.
|
12 |
Tomashefski JF Jr. Pulmonary pathology of acute respiratory distress syndrome [J]. Clin Chest Med, 2000, 21(3): 435-466.
|
13 |
Moss BJ, Ryter SW, Rosas IO. Pathogenic mechanisms underlying idiopathic pulmonary fibrosis [J]. Annu Rev Pathol, 2022, 17: 515-546.
|
14 |
Yanagi S, Tsubouchi H, Miura A, et al. Breakdown of epithelial barrier integrity and overdrive activation of alveolar epithelial cells in the pathogenesis of acute respiratory distress syndrome and lung fibrosis [J]. Biomed Res Int, 2015, 2015: 573210.
|
15 |
Burnham EL, Janssen WJ, Riches DW, et al. The fibroproliferative response in acute respiratory distress syndrome: mechanisms and clinical significance [J]. Eur Respir J, 2014, 43(1): 276-285.
|
16 |
Sisson TH, Mendez M, Choi K, et al. Targeted injury of type Ⅱ alveolar epithelial cells induces pulmonary fibrosis [J]. Am J Respir Crit Care Med, 2010, 181(3): 254-263.
|
17 |
Yao L, Conforti F, Hill C, et al. Paracrine signalling during ZEB1-mediated epithelial-mesenchymal transition augments local myofibroblast differentiation in lung fibrosis [J]. Cell Death Differ, 2019, 26(5): 943-957.
|
18 |
Selman M, Pardo A. Alveolar epithelial cell disintegrity and subsequent activation: a key process in pulmonary fibrosis [J]. Am J Respir Crit Care Med, 2012, 186(2): 119-121.
|
19 |
Basil MC, Cardenas-Diaz FL, Kathiriya JJ, et al. Human distal airways contain a multipotent secretory cell that can regenerate alveoli [J]. Nature, 2022, 604(7904): 120-126.
|
20 |
Laddha AP, Kulkarni YA. VEGF and FGF-2: promising targets for the treatment of respiratory disorders [J]. Respir Med, 2019, 156: 33-46.
|
21 |
Ebina M, Shimizukawa M, Shibata N, et al. Heterogeneous increase in CD34-positive alveolar capillaries in idiopathic pulmonary fibrosis [J]. Am J Respir Crit Care Med, 2004, 169(11): 1203-1208.
|
22 |
Cao Z, Lis R, Ginsberg M, et al. Targeting of the pulmonary capillary vascular niche promotes lung alveolar repair and ameliorates fibrosis [J]. Nat Med, 2016, 22(2): 154-162.
|
23 |
Piera-Velazquez S, Mendoza FA, Jimenez SA. Endothelial to mesenchymal transition (EndoMT) in the pathogenesis of human fibrotic diseases [J]. J Clin Med, 2016, 5(4): 45.
|
24 |
Huang X, Xiu H, Zhang S, et al. The role of macrophages in the pathogenesis of ALI/ARDS [J]. Mediators Inflamm, 2018, 2018: 1264913.
|
25 |
Duru N, Wolfson B, Zhou Q. Mechanisms of the alternative activation of macrophages and non-coding RNAs in the development of radiation-induced lung fibrosis [J]. World J Biol Chem, 2016, 7(4): 231-239.
|
26 |
Misharin AV, Morales-Nebreda L, Reyfman PA, et al. Monocyte-derived alveolar macrophages drive lung fibrosis and persist in the lung over the life span [J]. J Exp Med, 2017, 214(8): 2387-2404.
|
27 |
Zhou X, Franklin RA, Adler M, et al. Circuit design features of a stable two-cell system [J]. Cell, 2018, 172(4): 744-757.
|
28 |
Marini JJ, Gattinoni L. Time course of evolving ventilator-induced lung injury: the "shrinking baby lung" [J]. Crit Care Med, 2020, 48(8): 1203-1209.
|
29 |
Cabrera-Benítez NE, Parotto M, Post M, et al. Mechanical stress induces lung fibrosis by epithelial-mesenchymal transition [J]. Crit Care Med, 2012, 40(2): 510-517.
|
30 |
Albert RK, Smith B, Perlman CE, et al. Is progression of pulmonary fibrosis due to ventilation-induced lung injury? [J]. Am J Respir Crit Care Med, 2019, 200(2): 140-151.
|
31 |
Tschumperlin DJ, Ligresti G, Hilscher MB, et al. Mechanosensing and fibrosis [J]. J Clin Invest, 2018, 128(1): 74-84.
|
32 |
Kobayashi Y, Tata A, Konkimalla A, et al. Persistence of a regeneration-associated, transitional alveolar epithelial cell state in pulmonary fibrosis [J]. Nat Cell Biol, 2020, 22(8): 934-946.
|
33 |
Ting C, Aspal M, Vaishampayan N, et al. Fatal COVID-19 and non-COVID-19 acute respiratory distress syndrome is associated with incomplete alveolar type 1 epithelial cell differentiation from the transitional state without fibrosis [J]. Am J Pathol, 2022, 192(3): 454-467.
|
34 |
Lederer DJ, Martinez FJ. Idiopathic pulmonary fibrosis [J]. N Engl J Med, 2018, 378(19): 1811-1823.
|
35 |
Rogers AJ, Solus JF, Hunninghake GM, et al. MUC5B promoter polymorphism and development of acute respiratory distress syndrome [J]. Am J Respir Crit Care Med, 2018, 198(10): 1342-1345.
|
36 |
Capelozzi VL, Allen TC, Beasley MB, et al. Molecular and immune biomarkers in acute respiratory distress syndrome: a perspective from members of the Pulmonary Pathology Society [J]. Arch Pathol Lab Med, 2017, 141(12): 1719-1727.
|
37 |
Dhainaut JF, Charpentier J, Chiche JD. Transforming growth factor-beta: a mediator of cell regulation in acute respiratory distress syndrome [J]. Crit Care Med, 2003, 31(4 Suppl): S258-S264.
|
38 |
Gao L, Li X, Wang H, et al. Autotaxin levels in serum and bronchoalveolar lavage fluid are associated with inflammatory and fibrotic biomarkers and the clinical outcome in patients with acute respiratory distress syndrome [J]. J Intensive Care, 2021, 9(1): 44.
|
39 |
Moeller A, Gilpin SE, Ask K, et al. Circulating fibrocytes are an indicator of poor prognosis in idiopathic pulmonary fibrosis [J]. Am J Respir Crit Care Med, 2009, 179(7): 588-594.
|
40 |
Hudson LD, Hough CL. Therapy for late-phase acute respiratory distress syndrome [J]. Clin Chest Med, 2006, 27(4): 671-677.
|
41 |
Gao J, Chu W, Duan J, et al. Six-month outcomes of post-ARDS pulmonary fibrosis in patients with H1N1 pneumonia [J]. Front Mol Biosci, 2021, 8: 640763.
|
42 |
Bharat A, Querrey M, Markov NS, et al. Lung transplantation for patients with severe COVID-19 [J]. Sci Transl Med, 2020, 12(574): eabe4282.
|
43 |
Martin C, Papazian L, Payan MJ, et al. Pulmonary fibrosis correlates with outcome in adult respiratory distress syndrome. A study in mechanically ventilated patients [J]. Chest, 1995, 107(1): 196-200.
|
44 |
Gorman EA, O'Kane CM, McAuley DF. Acute respiratory distress syndrome in adults: diagnosis, outcomes, long-term sequelae, and management [J]. Lancet, 2022, 400(10358): 1157-1170.
|
45 |
Bos LD, Schouten LR, van Vught LA, et al. Identification and validation of distinct biological phenotypes in patients with acute respiratory distress syndrome by cluster analysis [J]. Thorax, 2017, 72(10): 876-883.
|
46 |
Liu X, Jiang Y, Jia X, et al. Identification of distinct clinical phenotypes of acute respiratory distress syndrome with differential responses to treatment [J]. Crit Care, 2021, 25(1): 320.
|